Xu Hướng 2/2023 # Các Biện Pháp Phát Hiện Và Bồi Dưỡng Học Sinh Giỏi Tiếng Việt Lớp 5 Ở Các Trường Tiểu Học Quốc Tế Tại Việt Nam # Top 9 View | Phauthuatthankinh.edu.vn

Xu Hướng 2/2023 # Các Biện Pháp Phát Hiện Và Bồi Dưỡng Học Sinh Giỏi Tiếng Việt Lớp 5 Ở Các Trường Tiểu Học Quốc Tế Tại Việt Nam # Top 9 View

Bạn đang xem bài viết Các Biện Pháp Phát Hiện Và Bồi Dưỡng Học Sinh Giỏi Tiếng Việt Lớp 5 Ở Các Trường Tiểu Học Quốc Tế Tại Việt Nam được cập nhật mới nhất trên website Phauthuatthankinh.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2

TRẦN THỊ THƯƠNG

CÁC BIỆN PHÁP PHÁT HIỆN VÀ BỒI DƯỠNG HỌC SINH GIỎI TIẾNG VIỆT LỚP 5 Ở CÁC TRƯỜNG TIỂU HỌC QUỐC TẾ TẠI VIỆT NAM

LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC

HÀ NỘI, 2015

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2

TRẦN THỊ THƯƠNG

CÁC BIỆN PHÁP PHÁT HIỆN VÀ BỒI DƯỠNG HỌC SINH GIỎI TIẾNG VIỆT LỚP 5 Ở CÁC TRƯỜNG TIỂU HỌC QUỐC TẾ TẠI VIỆT NAM Chuyên ngành: Giáo dục học (Bậc Tiểu học) Mã số: 60 14 01 01

LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC

Người hướng dẫn khoa học: TS. BÙI MINH ĐỨC

HÀ NỘI, 2015

1

LỜI CẢM ƠN Trong thời gian học tập và nghiên cứu, triển khai đề tài, tác giả luận văn đã nhận được sự động viên, giúp đỡ, chỉ bảo của các thầy, cô giáo, các chuyên gia trong và ngoài trường ĐHSP Hà Nội 2, của TS. Bùi Minh Đức – người hướng dẫn khoa học. Tác giả xin trân trọng gửi tới các thầy, cô giáo, các nhà khoa học lời biết ơn chân thành và sâu sắc nhất.

Hà Nội, ngày 15 tháng 11 năm 2014 Học viên

Trần Thị Thương

2 LỜI CAM ĐOAN

Tôi xin cam đoan luận văn “Các biện pháp phát hiện và bồi dưỡng học sinh giỏi Tiếng Việt lớp 5 ở các trường tiểu học quốc tế tại Việt Nam” là kết quả nghiên cứu của riêng tôi. Các kết quả trong luận văn này không trùng lặp với bất kì kết quả nào khác và chưa từng được ai công bố trước đây.

Hà Nội, ngày 15 tháng 11 năm 2014 Học viên

Trần Thị Thương

3

MỤC LỤC LỜI CẢM ƠN ……………………………………………………………………………………….. 1 LỜI CAM ĐOAN ………………………………………………………………………………….. 2 DANH MỤC NHỮNG TỪ VIẾT TẮT ……………………………………………………… 5 MỞ ĐẦU ……………………………………………………………………………………………… 6 NỘI DUNG …………………………………………………………………………………………. 13 CHƯƠNG 1 NHỮNG TIỀN ĐỀ LÝ LUẬN VÀ THỰC TIỄN CỦA VIỆC PHÁT HIỆN VÀ BỒI DƯỠNG HỌC SINH GIỎI TIẾNG VIỆT LỚP 5 ………. 13 1.1. Những tiền đề lí luận ……………………………………………………………………… 13 1.1.1. Khái niệm học sinh giỏi và đặc điểm của học sinh giỏi………………………. 13 1.1.2. Khái niệm học sinh giỏi Tiếng Việt và đặc điểm của học sinh giỏi môn Tiếng Việt ở Tiểu học …………………………………………………………………………… 16 1.1.3. Đặc điểm tư duy, nhận thức và kĩ năng học tập Tiếng Việt của học sinh giỏi Tiếng Việt lớp 5 …………………………………………………………………………….. 20 1.1.4. Những nguyên tắc đánh, giá xác định học sinh giỏi Tiếng Việt lớp 5 ….. 30 1.2. Những tiền đề thực tiễn ………………………………………………………………….. 34 1.2.1.Vai trò của việc phát hiện và bồi dưỡng học sinh giỏi môn Tiếng Việt tại các trường tiểu học quốc tế, song ngữ ……………………………………………………… 34 1.2.2. Những khó khăn của việc phát hiện và bồi dưỡng học sinh giỏi tiếng Việt lớp 5 tại các trường tiểu học song ngữ ………………………………………………. 35 1.2.3. Thực tiễn công tác phát hiện và bồi dưỡng học sinh giỏi Tiếng Việt lớp 5 trong một số nhà trường hiện nay …………………………………………………………. 36 CHƯƠNG 2 CÁC BIỆN PHÁP PHÁT HIỆN VÀ BỒI DƯỠNG HỌC SINH GIỎI TIẾNG VIỆT LỚP 5 …………………………………………………………………….. 41 2.1. Các biện pháp phát hiện………………………………………………………………….. 41 2.1.1. Căn cứ vào kết quả học tập ……………………………………………………………. 41 2.1.2. Căn cứ vào quá trình học tập trên lớp và ở nhà …………………………………. 41

4 2.1.3. Trao đổi trực tiếp với học sinh ……………………………………………………….. 42 2.1.4. Kiểm tra, đánh giá trình độ nhận thức và kĩ năng sử dụng Tiếng Việt của học sinh…………………………………………………………………………………………. 45 2.2. Các biện pháp bồi dưỡng học sinh giỏi Tiếng Việt lớp 5 ……………………… 59 2.2.1. Tạo hứng thú trong dạy học Tiếng Việt …………………………………………… 59 2.2.2. Bồi dưỡng kiến thức, kĩ năng học tập Tiếng Việt ………………………………. 80 2.2.3. Bồi dưỡng vốn sống cho HS ……………………………………………………….. 113 CHƯƠNG 3 BƯỚC ĐẦU VẬN DỤNG CÁC BIỆN PHÁP PHÁT HIỆN VÀ BỒI DƯỠNG HỌC SINH GIỎI TIẾNG VIỆT LỚP 5 Ở TRƯỜNG TIỂU HỌC QUỐC TẾ VIỆT NAM – SINGAPORE …………………………………………. 117 3.1. Những biện pháp phát hiện và bồi dưỡng đã áp dụng …………………………. 117 3.1.1. Những biện pháp phát hiện học sinh giỏi Tiếng Việt lớp 5 đã được áp dụng …………………………………………………………………………………………………. 118 3.1.2. Những biện pháp bồi dưỡng học sinh giỏi đã được áp dụng ……………… 119 3.2. Kết quả thu được ………………………………………………………………………….. 122 3.3. Bài học sư phạm …………………………………………………………………………… 126 KẾT LUẬN……………………………………………………………………………………….. 127 TÀI LIỆU THAM KHẢO ……………………………………………………………………. 129 PHỤ LỤC …………………………………………………………………………………………. 131

5 DANH MỤC NHỮNG TỪ VIẾT TẮT Từ viết tắt

Dịch nghĩa

CTVH

Cảm thụ văn học

GV

Giáo viên

HS

Học sinh

HSG

Học sinh giỏi

LTVC

Luyện từ và câu

TLV

Tập làm văn

6 MỞ ĐẦU 1. Lý do chọn đề tài 1.1. Trong lịch sử phát triển của nhân loại, ở bất kỳ thời đại nào, quốc gia nào con người luôn là động lực của sự phát triển xã hội, mà động lực tiên phong thúc đẩy sự phát triển nhanh và bền vững là do những người tài, những người có trí tuệ tạo ra. Nhân tài, nhất là các thiên tài có vai trò hết sức quan trọng trong việc phát triển kinh tế – xã hội. Vấn đề đào tạo, bồi dưỡng nhân tài từ lâu đã được xã hội quan tâm. Đặc biệt bước vào thế kỷ của nền văn minh trí tuệ, thế kỷ mà “cạnh tranh chất xám” sẽ diễn ra ngày càng gay gắt thì nhiều nước trong khu vực và trên thế giới lại càng quan tâm tới chiến lược nhân tài, đầu tư cho giáo dục, đầu tư cho việc đào tạo nhân tài và coi trọng nhân tài là chiến lược quyết định cho sự phồn thịnh của đất nước. 1.2. Mục tiêu “Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài” ở nước ta đã được cụ thể hoá trong nhiều văn kiện của Đảng và Nhà nước. Hiện nay, chúng ta đang trong xu thế hội nhập nền kinh tế quốc tế, gia nhập WTO thì nhân tài là một trong những yếu tố để chúng ta có thể tiếp cận với sự tiến bộ của KHCN của các nước trong khu vực và trên thế giới. 1.3. Thực hiện mục tiêu đó, các nhà trường Tiểu học của chúng ta đang cố gắng hướng đến sự phát triển tối đa những năng lực tiềm tàng trong mỗi học sinh. Ở các trường tiểu học hiện nay, đồng thời với nhiệm vụ phổ cập giáo dục tiểu học, nâng cao chất lượng đại trà, việc chăm lo bồi dưỡng học sinh giỏi đang được nhiều cấp bộ chính quyền và nhân dân địa phương quan tâm nhưng nguyên nhân sâu xa nhất đó chính là thực hiện mục tiêu giáo dục mà Đảng và Nhà nước đã đề ra. Bồi dưỡng học sinh giỏi ở tiểu học là nền móng cho chiến lược đào tạo người tài của đất nước. Vì vậy, phát hiện và bồi dưỡng học sinh giỏi ở cấp tiểu học là việc làm cần thiết và có ý nghĩa.

7 1.4. Trong số các môn học ở tiểu học, môn Tiếng Việt có tầm quan trọng nhất định và có thời lượng lớn. Vì vậy, công tác phát hiện và bồi dưỡng học sinh giỏi. Tiếng Việt lớp 5 cần được quan tâm và chú ý đặc biệt. Để có được các thành quả về giáo dục học sinh nói chung hay những thành tích cao của học sinh giỏi nói riêng, các nhà trường phải có sự quan tâm, chú ý từ các buổi học hằng ngày. Việc giáo dục học sinh hằng ngày cũng như hình thức tổ chức phải phong phú và phù hợp với đặc điểm tâm sinh lí học sinh mới đem lại hiệu quả trong giáo dục. 1.5. Trong những năm qua, các nhà trường ở tiểu học luôn chú trọng đến công tác bồi dưỡng học sinh giỏi khối lớp 5. Thực trạng cách thức phát hiện và bồi dưỡng học sinh giỏi khiến chúng ta chưa thực sự yên tâm. Nhiều giáo viên mới chỉ chú trọng đến việc thực hiện nghiêm túc nhiệm vụ bồi dưỡng học sinh mà chưa thực sự có kĩ năng phát hiện học sinh có năng khiếu cũng như chưa có biện pháp để học sinh bộc lộ hết năng khiếu của mình. Bên cạnh biện pháp bồi dưỡng học sinh giỏi, các biện pháp phát hiện học sinh giỏi đóng vai trò quan trọng không kém nhưng nhiều giáo viên chưa đầu tư lâu dài cho việc phát hiện học sinh có năng khiếu. Vì thế, việc bồi dưỡng học sinh giỏi tiếng Việt nhiều khi vẫn chưa đạt được hiệu quả như mong muốn. Trước thực tế trên việc nghiên cứu các biện pháp phát hiện và bồi dưỡng học sinh giỏi tiếng Việt càng trở nên cấp thiết hơn bao giờ hết. 1.6. Với xu thế hiện nay, các trường tiểu học quốc tế, song ngữ hoặc và các trường có yếu tố nước ngoài mở ra ngày càng nhiều. Các em học tập trong môi trường này cũng rất đa dạng, từ học sinh người nước ngoài, học sinh có bố hoặc mẹ là người nước ngoài tới học sinh thuần Việt. Việc học tập trong những môi trường tích hợp như vậy, học sinh có điều kiện tốt để học tập các môn ngoại ngữ, các nền văn hóa khác nhau trên thế giới… Nhưng ngược lại, trong những môi trường quốc tế, các em cũng gặp phải không ít khó khăn khi

8 học tập Tiếng Việt. Việc bồi dưỡng HSG Tiếng Việt ở các trường quốc tế tại Việt Nam còn khá mới mẻ. Điều này khiến chúng tôi rất trăn trở, bản thân Tiếng Việt là một môn học khá phức tạp đối với cả người bản ngữ, việc bảo tồn phát huy sự giàu đẹp, trong sáng của tiếng Việt nếu không được chú trọng sẽ khiến các em giảm bớt hứng thú với việc tìm hiểu và phát huy văn hóa dân tộc. Việc phát hiện và bồi dưỡng HSG Tiếng Việt trong những môi trường này là hết sức cần thiết. Nó tạo động lực để các em tìm hiểu, khám phá sâu, rộng, và hoàn thiện hơn vốn Tiếng Việt của mình. Chính vì những lí do trên, trong khuôn khổ luận văn này, vấn đề tôi tập trung nghiên cứu là: “Các biện pháp phát hiện và bồi dưỡng học sinh giỏi Tiếng Việt lớp 5 ở các trường tiểu học quốc tế tại Việt Nam”. 2. Lịch sử nghiên cứu vấn đề Bồi dưỡng học sinh giỏi Tiếng Việt ở tiểu học là một vấn đề không mới. Sau khi môn học tiếng mẹ đẻ được đưa vào chương trình giáo dục phổ thông với tên gọi Tiếng Việt (đầu năm 1981), đặc biệt là khi các kì thi học sinh giỏi văn, tiếng Việt được mở ra, ý tưởng tìm tòi các biện pháp bồi dưỡng học sinh giỏi tiếng Việt đã được nhiều nhà giáo thể hiện trong những cuốn sách tham khảo. Tác giả Lê Phương Nga với cuốn “Bồi dưỡng học sinh giỏi Tiếng Việt tiểu học” đã đề cập đến các dạng bài tập tiếng Việt nâng cao và phương pháp giải. Tác giả cũng giới thiệu với bạn đọc một số đề thi học sinh giỏi toàn quốc, đề thi học sinh giỏi của một số tỉnh, thành phố và một số đề thi vào một số trường Trung học cơ sở có thi tuyển. Ngay trong lời mở đầu cuốn sách, tác giả đã nói rõ mục đích biên soạn cuốn sách như sau: “Để tạo điều kiện cho học sinh, đặc biệt là học sinh lớp Bốn, Năm trau dồi kiến thức và kĩ năng, phấn đấu trở thành học sinh khá giỏi môn Tiếng Việt, đồng thời giúp các em

9 ôn tập, thực hành để thi vào lớp Sáu ở các trường Trung học cơ sở có thi tuyển”. Ngoài ra tác giả Lê Phương Nga còn có cuốn “Bồi dưỡng Tiếng Việt cho học sinh lớp 5″ với các đề ôn luyện được biên soạn tương ứng với các tuần học trong sách giáo khoa Tiếng Việt. Mỗi tuần có một đề tổng hợp nội dung của các phân môn Tập đọc, Luyện từ và câu, Chính tả, Tập làm văn,… được học trong tuần đó. Các bài tập được lựa chọn kĩ càng, ngữ liệu vui tươi, thú vị phù hợp với đặc điểm tâm sinh lí của học sinh Tiểu học. Ngoài các bài tập cơ bản, bộ sách còn có một số bài tập khó giúp nâng cao năng lực tiếng Việt cho học sinh. Cũng với mục đích tương tự, tác giả Trần Mạnh Hưởng và Lê Hữu Tỉnh đã biên soạn cuốn “Bồi dưỡng học sinh giỏi Tiếng Việt 5” đáp ứng nhu cầu luyện tập trau dồi kiến thức và kĩ năng của những học sinh khá giỏi lớp 5. Cuốn sách gồm 35 đề dành cho học sinh luyện tập. Mỗi đề gồm có 4 bài tập, được thiết kế theo mô hình đề thi hoặc kiểm tra, đánh giá học sinh khá giỏi ở Tiểu học. Nội dung các bài tập nhằm củng cố vững chắc những kiến thức, kĩ năng về dùng từ, đặt câu, cảm thụ văn học, làm văn; bám sát nội dung của 35 tuần thực học được thể hiện trong sách giáo khoa Tiếng Việt 5. Vấn đề bồi dưỡng học sinh giỏi Tiếng Việt đã được đề cập trong nhiều tài liệu cũng như nhiều công trình nghiên cứu. Tuy nhiên, hiện nay ở Việt Nam vẫn chưa có công trình nào nghiên cứu sâu về các biện pháp phát hiện học sinh giỏi tiếng Việt cho học sinh tiểu học nói chung và học sinh lớp 5 nói riêng, đặc biệt là các trường Quốc tế. Rải rác trong một số bài báo, trong một vài trang giáo trình hay chuyên đề giảng dạy đã đề cập đến vấn đề phát hiện học sinh giỏi Tiếng Việt ở tiểu học nhưng chưa mang tính hệ thống, mà chỉ nêu ra một cách chung chung có tính định hướng…

11 4. Nhiệm vụ nghiên cứu Để đạt được mục đích trên, luận văn có các nhiệm vụ – Xác lập quan điểm lý thuyết về học sinh giỏi lớp 5 và học sinh giỏi lớp 5 môn Tiếng Việt. Đề xuất bộ tiêu chí nhận diện, đánh giá HSG Tiếng Việt 5. – Tìm kiếm các biện pháp phát hiện và bồi dưỡng HS giỏi tiếng Việt lớp 5. – Đưa ra những chỉ dẫn cụ thể cho việc áp dụng các biện pháp trên trong dạy học. – Áp dụng thử nghiệm vào một số địa bàn dạy học cụ thể. 5. Phạm vi, giới hạn nghiên cứu – Luận văn chỉ tập trung vào các biện pháp cụ thể, chưa quy hoạch thành các chiến lược phát hiện và bồi dưỡng HS giỏi môn Tiếng Việt theo đơn vị cấp học. Khối lớp được chọn là lớp 5 thuộc các trường tiểu học song ngữ, quốc tế tại Việt Nam. – Luận văn chỉ khảo sát thực tiễn và tài liệu trong nước. 6. Phương pháp nghiên cứu Đề tài được nghiên cứu chủ yếu bằng các phương pháp: – Phương phân tích, tổng hợp, hệ thống hóa lý thuyết – Phương quan sát, điều tra, phỏng vấn. – Phương pháp thống kê.

12 7. Giả thuyết nghiên cứu Nếu áp dụng một cách khoa học và linh hoạt các biện pháp mà luận văn đề xuất, người GV tiểu học tại các trường song ngữ, quốc tế có thể phát hiện được và bồi dưỡng được những lớp HSG môn Tiếng Việt lớp 5, góp phần vào việc bồi dưỡng năng lực chuyên biệt cho các em theo định hướng phát triển năng lực. 8. Cấu trúc của luận văn Luận văn gồm ba phần: Mở đầu, Nội dung và Kết luận. Mở đầu: Nêu lí do chọn đề tài, lịch sử nghiên cứu vấn đề, mục đích nghiên cứu, nhiệm vụ nghiên cứu, phạm vi, giới hạn nghiên cứu, phương pháp nghiên cứu, giả thiết nghiên cứu và bố cục của luận văn Nội dung: gồm 3 chương Chương 1: Những tiền đề lý luận và thực tiễn của việc phát hiện và bồi dưỡng học sinh giỏi tiếng Việt lớp 5 Chương 2: Các biện pháp phát hiện và bồi dưỡng học sinh giỏi tiếng Việt lớp 5 Chương 3: Bước đầu áp dụng các biện pháp phát hiện và bồi dưỡng học sinh giỏi tiếng Việt lớp 5 vào trường tiểu học Việt Nam – Singapore Kết luận: Khái quát lại những vấn đề nghiên cứu của luận văn đồng thời gợi ra những vấn đề sẽ tiếp tục nghiên cứu sau này.

13 NỘI DUNG CHƯƠNG 1: NHỮNG TIỀN ĐỀ LÝ LUẬN VÀ THỰC TIỄN CỦA VIỆC PHÁT HIỆN VÀ BỒI DƯỠNG HỌC SINH GIỎI TIẾNG VIỆT LỚP 5

1.1. Những tiền đề lí luận 1.1.1. Khái niệm học sinh giỏi và đặc điểm của học sinh giỏi 1.1.1.1. Khái niệm học sinh giỏi Việc phát hiện và bồi dưỡng HSG đã được quan tâm và chú ý từ rất lâu, không chỉ ở Việt Nam mà tất cả các nước trên thế giới. Hầu hết các nước đều coi vấn đề phát hiện và bồi dưỡng học sinh giỏi là chiến lược quan trọng trong giáo dục phổ thông. Nhìn chung, các nước đều dùng hai thuật ngữ chính là Gift (giỏi, có năng khiếu) và Talent (tài năng) để chỉ học sinh giỏi. Luật giáo dục học sinh giỏi bang Georgia (Hoa Kỳ) định nghĩa học sinh giỏi như sau: “Học sinh giỏi là học sinh chứng minh được trí tuệ ở trình độ cao, có khả năng sáng tạo thể hiện một động cơ học tập mãnh liệt, đạt xuất sắc trong lĩnh vực lí thuyết, khoa học, người cần sự giáo dục đặc biệt và sự phục vụ đặc biệt để đạt được trình độ tương ứng với năng lực của người đó.” (Georgia Gifted & Talented Student Education Act) Theo Clak (2002) ở Mỹ người ta định nghĩa: “Học sinh giỏi là những học sinh, những người trẻ tuổi có dấu hiệu về khả năng hoàn thành xuất sắc công việc trong các lĩnh vực như trí tuệ, sáng tạo nghệ thuật, khả năng lãnh đạo hoặc trong lĩnh vực lí thuyết chuyên biệt. Những người này đòi hỏi sự phục vụ không theo trường lớp thông thường nhằm phát triển hết năng lực của họ.” (Wikipedia, the free encyclopedia – Academy for Gifted children). Bách khoa toàn thư Encarta Encyclopedia cũng khẳng định: “Giáo dục học sinh

15 HSG, có năng khiếu thường nhận và giải mã những tín hiệu phi ngôn ngữ. Chúng có thể suy luận theo một con đường khác với cách thông thường của trẻ em. Trẻ có thể làm việc độc lập từ rất sớm. Song song với khả năng làm việc độc lập rất hiệu quả, trẻ cần phải có thời gian tập trung lâu hơn so với trẻ em khác. Một số học sinh có năng khiếu lại biểu hiện bằng khả năng có năng lượng mạnh mẽ, điều đó đôi khi dẫn đến những chẩn đoán sai lầm là trẻ quá hiếu động. – Về kĩ năng học tập Học sinh có năng khiếu thường tìm hiểu kiến thức, kĩ năng cơ bản tốt hơn, nhanh hơn và ít thực hành. Họ giải quyết các vấn đề một cách có tổ chức, mục tiêu, định hướng và rất hiệu quả. HSG thường có động cơ học tập bền vững. Đó là khi trẻ thực sự muốn học hỏi, muốn tìm hiểu và khám phá. Trẻ thường không bằng lòng nếu chưa thực sự thỏa mãn được sự tò mò của bản thân. Một số trẻ có năng khiếu còn thể hiện khả năng học vượt cấp. Điều này rất phổ biến ở các nước phương Tây. – Về ý thức, thái độ học tập + Trẻ có năng khiếu thường ham học hỏi, thích đọc sách. Trẻ thường đọc rộng rãi, nhanh chóng và mạnh mẽ. Đọc sách, truyện là cách tốt nhất để mở rộng vốn sống cho các em. + Biết kiên nhẫn và kiên trì trong quá trình học tập, sáng tạo, không nản chí khi gặp phải vấn đề khó khăn.

16 – Về kết quả học tập Kết quả học tập là cái được thể hiện sau quá trình học tập của học sinh. Kết quả học tập tuy chưa thể phản ánh tuyệt đối chính xác về năng lực của học sinh, nhưng nó cũng thể hiện được tương đối khả năng mà học sinh có được. HSG cần thể hiện được một kết quả học tập tốt. Nhiều HSG, có năng khiếu còn có khả năng học vượt cấp. 1.1.2. Khái niệm học sinh giỏi Tiếng Việt và đặc điểm của học sinh giỏi môn Tiếng Việt ở Tiểu học 1.1.2.1. Khái niệm học sinh giỏi Tiếng Việt Từ khái niệm về HSG, chúng tôi thống nhất khái niệm: Học sinh giỏi Tiếng Việt là những học sinh có năng lực nổi trội, có biểu hiện về khả năng hoàn thành xuất sắc các hoạt động về lĩnh vực trí tuệ, sự sáng tạo, đặc biệt là có khả năng chuyên biệt trong học tập và nghiên cứu Tiếng Việt. Như vậy học sinh giỏi Tiếng Việt có kiến thức tiếng Việt cơ bản, vững vàng, sâu sắc và hệ thống, biết vận dụng linh hoạt và sáng tạo kiến thức tiếng Việt vào tình huống mới, có năng lực tư duy khái quát và sáng tạo. Đồng thời có kĩ năng thực nghiệm thành thạo và năng lực nghiên cứu tiếng Việt. 1.1.2.2. Đặc điểm của học sinh giỏi môn Tiếng Việt ở Tiểu học – Về kiến thức tiếng Việt HSG Tiếng Việt có vốn kiến thức Tiếng Việt cơ bản, vững vàng, sâu sắc và có hệ thống. Các tri thức tiếng Việt được học sinh thể hiện chủ yếu qua hai phần: Cảm thụ văn học, Tập làm văn. Nhưng, HSG Tiếng Việt muốn thể hiện tốt trong hai phần trên thì cần có kiến thức hệ thống và vững vàng trong

17 phân môn Tập đọc,Chính tả, Luyện từ và câu. Đó chính là cơ sở để học sinh vận dụng trong Cảm thụ văn học và Tập làm văn. Ví dụ: Để phát hiện ra cái hay, cái đẹp và giá trị của một đoạn thơ, văn thì các em cần có kĩ năng phân tích từ ngữ và các biện pháp nghệ thuật của văn bản. Đó là những kiến thức học sinh được tìm hiểu trong phân một Luyện từ và câu. Đối với văn kể chuyện các em phải xác định được cốt truyện, xem chúng bao gồm những sự việc gì, diễn biến và kết thúc ra sao. Các nhân vật trong truyện có hành động và lời nói như thế nào. Đối với văn miêu tả, các em không những phải thể hiện rõ nét, chính xác, sinh động đối tượng miêu tả mà còn thể hiện được trí tưởng tượng, cảm xúc và đánh giá của người viết đối với đối tượng được miêu tả. Mỗi đối tượng miêu tả đều có những đặc điểm khác nhau. Vì vậy khi miêu tả các em cần biết lựa chọn, chắt lọc từ ngữ để làm nổi bật những nét riêng khác biệt này để bài văn vừa mang đặc điểm chung của thể loại văn miêu tả, vừa mang đặc điểm riêng của đối tượng miêu tả … Như vậy, vốn kiến thức cơ bản, vững vàng, sâu sắc và có hệ thống là đặc điểm quan trọng và là tiền đề của học sinh giỏi Tiếng Việt. – Về khả năng tư duy ngôn ngữ HSG Tiếng Việt cần bộc lộ trình độ nhận thức cao đối với tiếng Việt, cụ thể như sau: + Khả năng nhận thức tiếng Việt nhanh, rõ ràng và nhanh chóng vận dụng vào tình huống tương tự (tích hợp kiến thức).

18 + Có nhiều hứng thú trong các tiết học, đặc biệt là bài mới. Có khả năng nhạy bén với ngôn ngữ. Đồng thời với quá trình nhận thức, học sinh cần bộc lộ những ưu thế trong năng lực tư duy như sau: + Biết phân tích các sự vật và hiện tượng qua các dấu hiệu đặc trưng của chúng. + Biết thay đổi góc nhìn khi xem xét sự vật hiện tượng (cái nhìn đa chiều đối với sự vật). Điều này chính là yếu tố quan trọng để học sinh có thể sáng tạo nét riêng trong bài văn. Ví dụ: Cùng một bài văn tả cảnh bình minh, nhưng một học sinh có năng lực Tiếng Việt biết miêu tả mặt trời với những hành ảnh “rất người” như sau: Cảnh bình minh nơi đâu cũng đẹp. Đó là khi mặt trời còn bẽn lẽn núp sau sườn núi, những tia nắng dịu dàng đã bắt đầu xuyên thủng màn sương bao phủ núi đồi. Đó là buổi hừng đông với những tia nắng hồng nhảy nhót trên mặt biển. Đó là khi tầng tầng lớp lớp bụi hồng ánh sáng đã ùa ra khắp phố phường… Nếu không có cái nhìn đa chiều đối với sự vật, chắc chắc em học sinh này không thể tạo ra những hình ảnh sinh động như thế. – Về hệ thống kĩ năng sử dụng ngôn ngữ Tiếng Việt + Biết cách tìm con đường ngắn để sớm đi đến kết luận cần thiết cũng như biết xây dựng những dẫn chứng, ví dụ và loại bỏ những yếu tố không cần thiết. Biết quay lại điểm xuất phát để tìm ra con đường đi mới. + Biết sử dụng thành thạo kĩ năng đọc, hiểu văn bản.

Skkn Giải Pháp Bồi Dưỡng Học Sinh Giỏi Môn Tiếng Việt

Sáng kiến kinh nghiệm

Giải pháp bồi dưỡng HSG môn Tiếng Việt

A- ĐẶT VẤN ĐỀ : Tiếng Việt là một môn học quan trọng đối với bậc Tiểu học. Qua môn học này giúp học sinh biết đọc thông viết thạo, biết sử dụng từ ngữ một cách chuẩn xác và có kĩ năng giao tiếp trong cuộc sống sinh hoạt hàng ngày. Những kiến thức của môn học Tiếng Việt là tiền đề, là cơ sở cho học sinh tiếp cận với các môn học khác. Việc dạy và học Tiếng Việt trong nhà trường luôn được chú trọng ngay từ lớp đầu cấp. Đặc biệt là công tác phát hiện và bồi dưỡng những mầm non năng khiếu Tiếng Việt đã và đang được các nhà trường rất quan tâm. Trong thời đại hiện nay – thời đại của sự bùng nổ công nghệ thông tin, đất nước ta đang trên đà hội nhập và phát triển thì việc dạy và học môn học này càng trở nên cần thiết. Học tốt môn Tiếng Việt sẽ bồi dưỡng cho các em học sinh tình yêu quê hương đất nước, có ý thức giữ gìn sự trong sáng của Tiếng Việt và bản sắc văn hoá dân tộc. Song trong thực tế trong các nhà trường một bộ phận phụ huynh có tư tưởng xem nhẹ môn Tiếng Việt, chỉ thích con em mình theo học các lớp năng khiếu Toán, ngoại ngữ khiến cho công tác bồi dưỡng học sinh giỏi môn Tiếng Việt tại các trường Tiểu học gặp không ít khó khăn. Xuất phát từ thực tế trong nhà trường, với cương vị của người quản lý chỉ đạo chuyên môn, tôi nhận thấy để công tác bồi dưỡng học sinh giỏi môn Tiếng Việt đạt kết quả cao cần có sự phối kết hợp đồng bộ giữa cán bộ quản lí chuyên môn với đội ngũ giáo viên trực tiếp giảng dạy và sự vào cuộc của phụ huynh học sinh. Bằng kinh ngiệm của mình, tôi xin được nêu ra một số giải pháp trong việc chỉ đạo công tác bồi dưỡng học sinh giỏi môn Tiếng Việt ở trường Tiểu học . B- GIẢI QUYẾT VẤN ĐỀ : I . Xây dựng kế hoạch chỉ đạo : Kế hoạch bồi dưỡng học sinh giỏi của nhà trường được xây dựng trên nhiệm vụ chỉ đạo của các cấp các ngành, đồng thời cần chú ý đến đặc điểm riêng của nhà trường, của địa phương, chú trọng chỉ đạo xây dựng trọng điểm mũi nhọn “Bồi dưỡng học sinh giỏi môn Tiếng Việt “. Riêng hoạt động này được xây dựng chi tiết, tỉ mỉ, bàn bạc thống nhất với hội đồng nhà trường, hội phụ huynh học sinh và địa phương …. để đi đến thống nhất thực hiện. II . Tổ chức thực hiện : 1, Phát hiện học sinh giỏi Tiếng Việt : Công tác phát hiện và lựa chọn học sinh giỏi Tiếng Việt là một việc làm hết sức quan trọng. Việc lựa chọn không phải chỉ chú ý đến lực học của môn học mà còn phải quan tâm đến sở thích, sự say mê của các em đối với Tiếng Việt. Trong quá trình dạy học giáo viên phải chú ý đến các đối tượng học sinh. Định hướng cho các em biết được vai trò cần thiết của môn học,

quan đó các em được mở mang tầm hiểu biết đồng thời có thêm những kiến thức thực tế về các phong cảnh mà các em được tận mắt ngắm nhìn. – Đối với giáo viên : Mỗi giáo viên trong nhà trường đều xác định rõ ràng phần thưởng cao quý nhất của mình là sự tin yêu của các em học sinh, uy tín, sự tôn trọng, thán phục của phụ huynh và bạn bè đồng nghiệp. Hằng kì, hằng năm nhà trường luôn theo dõi thành tích mà giáo viên đạt được để tuyên dương trong các cuộc họp hội đồng, họp phụ huynh học sinh và tuyên truyền trên đài truyền thanh xã. Nhà trường tham mưu với hội khuyến học xã tổ chức lễ phát thưởng và tuyên dương thành tích cho cán bộ giáo viên trong các dịp khai giảng, tổng kết, ngày nhà giáo Việt Nam. Với những phần thưởng tuy nhỏ bé không có nhiều về giá trị vật chất nhưng là nguồn động viên tinh thần lớn đối với giáo viên làm công tác bồi dưỡng học sinh giỏi. III/ Kết quả đạt được : 1, Kết quả kiểm định học sinh giỏi cấp Huyện môn Tiếng Việt Trong năm học 2010 – 2011 thực hiện kế hoạch chỉ đạo của Phòng Giáo dục Quỳnh Phụ trường đã có 80 em học sinh lớp 3,4,5 tham dự kiểm định học sinh giỏi văn hoá cấp Huyện , bài làm môn Tiếng Việt của các em được đánh giá cao, kết quả cụ thể như sau : Khối III IV V Số dự KT 30 25 25 SL đạt 26 22 23 2, Kết quả kiểm tra môn Tiếng Việt học kì I năm học 2010 – 2011 : Cùng với chất lượng học sinh giỏi qua kiểm định, chất lượng học sinh khá giỏi của môn Tiếng Việt qua các kì kiểm tra định kì cũng được nâng lên rõ rệt. Trong học kì I vừa qua Môn Tiếng Việt toàn trường đạt 96 % , học sinh đạt khá giỏi đạt được như sau: Khối I II III IV V Giỏi 35% 32% 24% 27% 45 % Khá 40 % 41 % 50 % 49 % 43 % C. KẾT LUẬN Bằng những việc làm cụ thể, thiết thực trên, trong năm qua công tác phát hiện và bồi dưỡng học sinh giỏi môn Tiếng Việt ở trường tôi đã gặt hái được nhiều thành công góp phần không nhỏ vào phong trào giáo dục của xã nhà và là địa chỉ tin cậy của phòng giáo dục, xứng đáng với niềm tin của phụ huynh học sinh và nhân dân trong xã . 1. Bài học kinh nghiệm: Để phong trào bồi dưỡng học sinh giỏi môn Tiếng Việt ở trường Tiểu học đạt hiệu quả cao đòi hỏi người quản lý phải:

Bồi Dưỡng Học Sinh Giỏi Toán Tiểu Học

Published on

Bồi dưỡng học sinh giỏi Toán Tiểu Học từ lớp 1 đến lớp 5. Mọi thông tin cần hỗ trợ tài liệu, bồi dưỡng HSG, đăng ký học vui lòng liên hệ Hotline: 0936.128.126.

1. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 1 BỒI DƯỠNG HSG TOÁN TIỂU HỌC Giáo viên giảng dạy: Thầy Toàn Đăng ký học: 0936.128.126 Website: chúng tôi NỘI DUNG CHƯƠNG TRÌNH TÀI LIỆU BỒI DƯỠNG MÔN TOÁN TIỂU HỌC A. LÝ LUẬN VÀ PHƯƠNG PHÁP GIẢNG DẠY B. CÁC CHUYÊN ĐỀ BỒI DƯỠNG MÔN TOÁN Mọi thông tin cần hỗ trợ tài liệu, bồi dưỡng HSG Toán tiểu học từ lớp 1 đến lớp 5, ôn luyện thi vào lớp 6 các trường chuyên, trọng điểm, vui lòng liên hệ theo số máy: 0936.128.126. Website: http://daytoantieuhoc.com

2. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 2 A. LÝ LUẬN VÀ PHƯƠNG PHÁP GIẢNG DẠY §1. Phát hiện và bồi dưỡng học sinh có năng khiếu toán 1) Biểu hiện của học sinh có năng khiếu – Có khả năng thay đổi phương thức hành động để giải quyết vấn đề phù hợp với các thay đổi các điều kiện. Vd: “Xếp 5 hình vuông bằng 6 que diêm?” ” Xếp 3 hình tam giác bằng 7 que diêm?” ” Xếp 8 hình tam giác bằng 6 que diêm?” ” Xếp 10 hình tam giác bằng 5 que diêm?” – Có khả năng chuyển từ trừu tượng khái quát sang cụ thể và từ cụ thể sang trừu tượng khái quát Vd: Cho dãy số 5, 8, 11, 14 … Tính số hạng thứ 2007 của dãy số? + Số hạng thứ hai : 5 + 1 × 3 + Số hạng thứ ba : 5 + 2 × 3 + Số hạng thứ tư : 5 + 3 × 3 + Số hạng thứ năm: 5 + 4 × 3 ………………………………. Hãy so sánh mỗi số hạng với số hạng đầu và khoảng cách của dãy số để tìm ra quy luật? – Có khả năng xác lập sự phụ thuộc giữa các dữ kiện theo cả hai hướng xuôi và ngược lại. Vd: + Sự phụ thuộc của tổng các giá trị của các số hạng có thể xác định phụ thuộc của các số hạng vào sự biến đổi của tổng. abc = 20 × (a + b + c) 80 × a = 10 × b + 19 × c  19 × c  10  c = 0  a = 1; b = 8 + Điều kiện một số chia hết cho 3, 5, 9, 4, 11 và ngược lại? – Thích tìm lời giải một bài toán theo nhiều cách hoặc xem xét một vấn đề dưới nhiều khía cạnh khác nhau. Vd: Nói chung tích của 2 số tự nhiên là một số lớn hơn mỗi thừa số của nó. Đặt vấn đề tìm các thí dụ phủ định kết luận trên. – Có sự quan sát tinh tế nhanh chóng phát hiện ra các dấu hiệu chung và riêng, nhanh chóng phát hiện ra những chỗ nút làm cho việc giải quyết vấn đề phát triển theo hướng hợp lý hơn độc đáo hơn.

3. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 3 – Có trí tưởng tượng hình học một cách phát triển. Các em có khả năng hình dung ra các biến đổi hình để có hình cùng cùng diện tích, thể tích. – Có khả năng suy luận có căn cứ, rõ ràng. Có óc tò mò, không muốn dừng lại ở việc làm theo mẫu, hoặc những cái có sẵn, hay những gì còn vướng mắc, hoài nghi. Luôn có ý thức tự kiểm tra lại việc mình đã làm. 2) Biện pháp sư phạm: – Thường xuyên củng cố các kiến thức vững chắc cho học sinh và hướng dẫn các em đào sâu các kiến thức đã học thông qua các gợi ý hay các câu hỏi hướng dẫn đi sâu vào kiến thức trọng tâm bài học: Yêu cầu học sinh tự tìm các ví dụ minh họa, các phản ví dụ dễ (nếu có), các thí dụ cụ thể hóa các tính chất chung, đặc biệt thông qua việc vận dụng và thực hành, kiểm tra các kiến thức tiếp thu, các bài tập đã làm của học sinh. – Tăng cường một số bài tập khó hơn trình độ chung trong đó đòi hỏi vận dụng sâu các khái niệm đã học hoặc vận dụng các cách giải một cách linh hoạt, sáng tạo hơn hoặc phương pháp tổng hợp. – Yêu cầu học sinh giải một bài toán bằng nhiều cách khác nhau nếu có thể. Phân tích so sánh tìm ra cách giải hay nhất, hợp lý nhất. Vd: Bài toán cổ: “Vừa gà vừa chó Bó lại cho tròn Ba mươi sáu con Một trăm chân chẵn Tính số gà? Số chó? ” – Tập cho học sinh thường xuyên tự lập các đề toán và giải nó. Vd: Lập đề toán về dạng tìm hai số khi biết tổng và hiệu hoặc biết tổng và tỷ số của hai số. – Sử dụng một số bài toán có những chứng minh suy diễn (nhất là toán hình học) để dần dần hình thành và bồi dưỡng cho học sinh phương pháp chứng minh toán học. Vd: Cho ▲ABC có 2 điểm E thuộc AB và F thuộc BC sao cho EA = 3 × EC, FB = 2 × FC; Gọi I là giao điểm của AF và BE; Tính tỷ số IF : IA và IE : IB. – Giới thiệu ngoại khóa tiểu sử một số nhà toán học xuất sắc đặc biệt là những nhà toán học trẻ tuổi và một số phát minh toán học quan trọng; đặc biệt biệt là tấm gương những nhà toán học trong nước, những học sinh giỏi toán ở địa phương đã thành đạt trong cuộc sống thế nào để giáo dục tình cảm yêu thích môn toán và kính trọng các nhà toán học. – Tổ chức dạ hội toán học, thi đố toán học và nếu có điều kiện tổ chức ” câu lạc bộ các học sinh yêu toán” – Bồi dưỡng cho các em phương pháp học toán và cách tự tổ chức tự học ở nhà cùng gia đình.

4. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 4 – Kết hợp việc bồi dưỡng khả năng học toán với việc học tốt môn Tiếng Việt để phát triển dần khả năng sử dụng ngôn ngữ. §2. SUY LUẬN TOÁN HỌC 1) Suy luận là gì? Suy luận là quá trình suy nghĩ đi từ một hay nhiều mệnh đề cho trước rút ra mệnh đề mới. Mỗi mệnh đề đã cho trước gọi là tiền đề của suy luận. Mệnh đề mới được rút ra gọi là kết luận hay hệ quả. Ký hiệu: X1, X2, …, Xn Y Nếu X1, X2, …, Xn  Y là hằng đúng thì ta gọi kết luận Y là kết luận logic hay hệ quả logic Ký hiệu suy luận logic: 1 2, , …., nX X X Y 2) Suy diễn Suy diễn là suy luận hợp logic đi từ cái đúng chung đến kết luận cho cái riêng, từ cái tổng quát đến cái ít tổng quát. Đặc trưng của suy diễn là việc rút ra mệnh đề mới từ cái mệnh đề đã có được thực hiện theo các qui tắc logic. – Quy tắc kết luận: ,X Y X Y  – Quy tắc kết luận ngược: ,X Y Y X  – Quy tắc bắc cầu: ,X Y Y Z X Z    – Quy tắc đảo đề: X Y Y X   – Quy tắc hoán vị tiền đề:     X Y Z Y X Z     – Quy tắc ghép tiền đề:  X Y Z X Y Z     – X Y Z X Y    X Y Z X Z    3) Suy luận quy nạp: Suy luận quy nạp là phép suy luận đi từ cái đúng riêng tới kết luận chung, từ cái ít tổng quát đến cái tổng quát hơn. Đặc trưng của suy luận quy nạp là không có quy tắc chung cho quá trình suy luận, mà chỉ ở trên cơ sở nhận xét kiểm tra để rút ra kết luận. Do vậy kết luận rút ra trong quá trình suy luận quy nạp có thể đúng có thể sai, có tính ước đoán. Vd: 4 = 2 + 2 6 = 3 + 3 10 = 7 + 3 …………….

5. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 5 Kết luận: Mọi số tự nhiên chẵn lớn hơn 2 đều là tổng của 2 số nguyên tố. a) Quy nạp không hoàn toàn : Là phép suy luận quy nạp mà kết luận chung chỉ dựa vào một số trường hợp cụ thể đã được xet đến. Kết luận của phép suy luận không hoàn toàn chỉ có tính chất ước đoán, tức là nó có thể đúng, có thể sai và nó có tác dụng gợi lên giả thuyết. Sơ đồ: A1 , A2 , A3 , A4 , A5… An là B A1 , A2 , A3 , A4 , A5… An là 1 số phần tử của A Kết luận: Mọi phần tử của A là B Vd: 2 + 3 = 3 + 2 4 + 1 = 1 + 4 …… Kết luận: Phép cộng của hai số tự nhiên có tính chất giao hoán b) Phép tương tự: Là phép suy luận đi từ một số thuộc tính giống nhau của hai đối tượng để rút ra kết luận về những thuộc tính giống nhau khác của hai đối tương đó. Kết luận của phép tương tự có tính chất ước đoán, tức là nó có thể đúng, có thể sai và nó có tác dụng gợi lên giả thuyết. Sơ đồ : A có thuộc tính a, b, c, d B có thuộc tính a, b, c Kết luận : B có thuộc tính d . Vd: + Tính tổng : S = 1 1 2 + 1 2 3 + 1 1 …. + 3 4 99 100    1 1 1 1 2 1 2 1 1 1 2 3 2 3 ………. 1 1 1 99 100 99 100 1 1 1 100 S             Tương tự tính tổng: P = 1 1 2 3  + 1 2 3 4  + 1 1 …. + 3 4 5 99 100 101      1 1 1 1 = ( – ) 1 2 3 1 2 2 3 2      1 1 1 1 = ( – ) 2 3 4 2 3 3 4 2      ………….

6. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 6 1 1 1 1 = ( – ) 99 100 101 99 100 100 101 2      Từ đây dễ dàng tính đươc P c) Phép khái quát hóa: Là phép suy luận đi từ một đối tượng sang một nhóm đối tượng nào đó có chứa đối tượng này. Kết luận của phép khái quát hóa có tính chất ước đoán, tức là nó có thể đúng, có thể sai và nó có tác dụng gợi lên giả thuyết. Vd: Phép cộng hai phân số (Lớp 4) * 3 2 ? 8 8   Ta có : 3 2 3 2 5 8 8 8 8     Suy ra quy tắc chung về cộng hai phân số cùng mẫu số. * 1 1 ? 2 3   Ta có: 1 1 3 3 2 2 3 6     1 1 2 2 3 3 2 6     Cộng hai phân số : 1 1 3 2 5 2 3 6 6 6     Suy ra quy tắc chung cộng hai phân số khác mẫu số. Vd: Chia một tổng cho một số ( Lớp 4) -Tính và so sánh hai biểu thức : (35 + 21) : 7 và 35 : 7 +21 : 7 -Ta có: (35 + 21) : 7 = 56 : 7 = 8 35 : 7 + 21 : 7 = 5 + 3 = 8 -Vậy suy ra: ( 35 + 21) : 7 = 35 : 7 + 21 : 7 – Suy ra quy tắc chung chia một tổng cho một số. c) Phép đặc biệt hóa: Là phép suy luận đi từ tập hợp đối tượng sang tập hợp đối tượng nhỏ hơn chứa trong tập hợp ban đầu. Kết luận của phép đặc biệt hóa nói chung là đúng, trừ các trường hợp đặc biệt giới hạn hay suy biến thì kết luận của nó có thể đúng, có thể sai và nó có tác dụng gợi lên giả thuyết. Trong toán học phép đặc biệt hóa có thể xảy ra các trường hợp đặc biệt giới hạn hay suy biến: Điểm có thể coi là đường tròn có bán kính là 0; Tam giác có thể coi là tứ giác khi một cạnh có độ dài bằng 0;Tiếp tuyến có thể coi là giới hạn của cát tuyến của đường cong khi một giao điểm cố định còn giao điểm kia chuyển động đền nó. § 3 Hai phương pháp chứng minh toán học ở Tiểu học 1) Phương pháp chứng minh tổng hợp:

7. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 7 Nội dung: Phương pháp chứng minh tổng hợp là phương pháp chứng minh đi từ điều đã cho trước hoặc điều đã biết nào đó đến điều cần tìm, điều cần chứng minh. Cơ sở: Quy tắc lôgíc kết luận Sơ đồ: A  B  C  …  Y  X Trong đó A là mệnh đề đã biết hoặc đã cho trước; B là hệ quả lôgíc của A; C là hệ quả lôgíc của B; ….. ; X là hệ quả lôgíc của Y. Vai trò và ý nghĩa: + Phương pháp chứng minh tổng hợp dễ gây ra khó khăn đột ngột, không tự nhiên vì mệnh đề chọn làm mệnh đề xuất phát nếu là mệnh đề đúng đã biết nào đó thì nó hoàn toàn phụ thuộc vào năng lực của từng học sinh. + Phương pháp chứng minh tổng hợp ngắn gọn vì thường từ mệnh đề tiền đề ta dễ suy luận trực tiếp ra một hệ quả logic của nó. + Phương pháp chứng minh tổng hợp được sử dụng rộng rãi trong trình bày chứng minh toán học, trong việc dạy và học toán ở trường phổ thông. Ví dụ: Bài toán ” Hiện nay tuổi của bố gấp 4 lần tuổi của con và tổng số tuổi của hai bố con là 50 tuổi. Hỏi sau bao nhiêu năm nữa thì tuổi của bố gấp 2 lần tuổi của con?” ” Cho tứ giác lồi ABCD và M, N, P, Q lần lượt là điểm giữa của các cạnh AB, BC, CD, DA. Biết diện tích của của MNPQ là 100 cm2 , hãy tính diện tích của rứ giác ABCD? ” 2) Phương pháp chứng minh phân tích đi lên: Nội dung: Phương pháp chứng minh phân tich đi lên là phương pháp chứng minh suy diễn đi ngược lên đi từ điều cần tìm, điều cần chứng minh đến điều đã cho trước hoặc đã biết nào đó. Cơ sở: Quy tắc lôgíc kết luận. Sơ đồ: X Y  …  B  A Trong đó: X là mệnh đề cần chứng minh; Y là tiền đề lôgíc của X ; ….. ; A là tiền đề lôgíc của B; A là mệnh đề đã biết hoặc đã cho trước; Vai trò và ý nghĩa: + Phương pháp chứng minh phân tích đi lên tự nhiên, thuận tiện vì mệnh đề chọn làm mệnh đề xuất phát là mệnh đề cần tìm, mệnh đề cần chứng minh, hay mệnh đề kết luận. + Phương pháp chứng minh phân tích đi lên thường rát dài dòng vì thường từ mệnh đề chọn là mệnh đề kết luận ta có thể tìm ra nhiều mệnh đề khác nhau làm tiền đề logic của nó. + Phương pháp chứng minh phân tích đi lên được sử dụng rộng rãi trong phân tích tìm ra đường lối chứng minh toán học, trong việc dạy và học toán ở trường phổ thông. Ví dụ: Bài toán ” Hai vòi nước cùng chảy vào một bể không chứa nước sau 12 giờ thì đầy bể. Biết rằng lượng nước mỗi giờ chảy vào bể của vòi 1 gấp 1, 5 lần lượng nước của vòi 2 chảy vào bể. Hỏi sau mỗi vòi chảy một mình trong bao lâu sẽ đầy bể?”

8. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 8 B. CÁC CHUYÊN ĐỀ BỒI DƯỠNG HSG MÔN TOÁN TIỂU HỌC § 1. CẤU TẠO SỐ TỰ NHIÊN Bài 1: Tìm một số tự nhiên có 3 chữ số, biết rằng nếu lấy chữ số hàng chục chia cho chữ số hàng đơn vị thì được thương là 2 dư 2, chữ số hàng trăm chia cho chữ số hàng đơn vị thì được thương là 2 dư 1. Hd: + Gọi số cần tìm là abc , (a, b, c là các chữ số từ 0 đến 9, a khác 0). Ta có: b = c  2 + 2. Chữ số hàng đơn vị phải lớn hơn 2 ( vì số dư là 2). Chữ số hàng đơn vị cũng không thể lớn hơn 3 (vì nếu chẳng hạn bằng 4 thì b = 4 x 2 + 2 = 10). Vậy suy ra c = 3. + Ta thấy: b = 3 x 2 + 2 = 8. Theo đề bài ta lại có: a = c x 2 + 1 = 3 x 2 + 1 = 7. Thử lại: 8 = 3  2 + 2; 7 = 3  2 + 1. Bài 2: Tìm một số tự nhiên có 4 chữ số, biết rằng nếu lấy số đó cộng với tổng các chữ số của nó thì được 2000. Hd: + Giả sử số đó là 10,,,0;0,  dcbaaabcd Theo đề bài ta có 2000 – abcd = a + b + c + d hay 2000 – (a + b + c + d) = abcd . Lập luận để có ab = 19. + Từ đó tìm được c = 8 và d = 1. Thử lại: 2000 – 1981 = 1 + 9 + 8 + 1 = 19. Vậy số cần tìm là 1981. Bài 3: Tìm số tự nhiên A có 2 chữ số, biết rằng B là tổng các chữ số của A và C là tổng các chữ số của B, đồng thời cho biết A = B + C + 51. Hd: + Giả sử A = ab , 0;0 , 10a a b   . Lập luận để có C là số có một chữ số c nên 51 cbaab hay 519  ca Từ 519  ca lập luận để có a = 6. + Từ a = 6 tìm được c = 3. Nên số phải tìm là b6 . Xét lần lượt 60, … , 69 ta thấy chỉ có 66 là cho kết quả c = 3. Thử lại: 12 + 3 + 51 = 66. Vậy 66 là số cần tìm. Bài 4:

10. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 10 Hd: – Lập luận để có thương là số có 3 chữ số, còn số chia là số có 2 chữ số. – Mô phỏng quá trình chia: – Tìm 3 tích riêng tương ứng với 3 lần chia có 3 số dư là 10, 14, 9. + Tích của số chia và chữ số hàng cao nhất của thương là 55 – 10 = 45 + Tích của số chia và chữ số hàng cao thứ 2 của thương là 104 – 14 = 90. + Tích của số chia và chữ số hàng cao thứ 3 của thương 114 – 9 = 135 Trong 3 tích riêng có số 45 là số lẻ và nhỏ nhất nên số chia là số lẻ, mà số 45 chỉ chia hết cho số có 2 chữ số là 45. Vậy số chia là 45, thương là 123. Bài 8: Khi nhân một số tự nhiên với 2008, một học sinh đã quên viết một chữ số 0 ở số 2008 nên tích đúng bị giảm đi 221400 đơn vị. Tìm thừa số chưa biết. Hd: Thừa số đã biết là 2008, nhưng đã viết sai thành 208. Thừa số này bị giảm đi 2008 – 208 = 1800 (đvị). Thừa số chưa biết được giữ nguyên, thừa số đã biết bị giảm đi 1800 đơn vị thì tích bị giảm đi là 1800 lần thừa số chưa biết. Theo đề bài số giảm đi là 221400. Vậy thừa số chưa biết là 221400 : 1800 = 123. Bài 9: Tìm số tự nhiên có 2 chữ số, biết rằng nếu lấy số đó chia cho hiệu của chữ số hàng chục và chữ số hàng đơn vị, ta được thương là 28 dư 1. Hd: Gọi số phải tìm là ab , ( 0  a, b < 10, a  0). Ta có ab = (a – b)  28 + 1. Khi đó 0 < a – b < 4 vì nếu không thì ab không phải là số có 2 chữ số. Nếu a – b = 1 thì ab = 29 loại vì a không trừ được cho b. Nếu a – b = 2 thì ab = 57 loại vì a không trừ được cho b. Nếu a – b = 3 thì ab = 85 chọn vì a – b = 8 – 5 = 3. Bài 10: Tìm số tự nhiên có 3 chữ số, biết rằng số đó gấp 20 lần tổng các chữ số của nó. Hd: … 5544 -…. 104 -…. 144 -…. 9 …

11. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 11 Gọi số phải tìm là abc , ( 0  a, b, c < 10, a  0). Theo bài ra ta có: abc = (a + b + c)  20. Vế trái có tận cùng là 0 nên vế phải có tận cùng là 0, hay c = 0. khi đó ta có: 8  a = b suy ra a = 1, b = 8. Thử lại: 180 = (1 + 8 + 0)  20. Bài 11: Tìm số tự nhiên có 3 chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó. Hd: Gọi số phải tìm là abc , ( 0  a, b, c < 10, a  0). Theo bài ra ta có: abc = 5  a  b  c. Điều này chứng tỏ 5abc  , tức là c = 0 hoặc c = 5. Dễ thấy c = 0 vô lý ( Loại) Với c = 5: Ta có 5 25ab  . Vậy suy ra b = 2 hoặc b = 7. Với b = 2 vô lý (Loại) Với b = 7: Suy ra a = 1. Số phải tìm 175. Bài 12: Tìm số tự nhiên có 3 chữ số, biết rằng nếu chuyển chữ số cuối lên trước chữ số đầu ta được số mới hơn số đã cho 765 đơn vị. Hd: Gọi số phải tìm là abc, ( 0  a, b, c < 10, a  0). Theo bài ra ta có: cab – abc = 765  11  c = 85 + b + 10  a Vì 85 + b + 10  a  95  11  c  95  c = 9  14 = b + 10  a  a = 1, b = 4. Vậy số phải tìm là 149. Bài 13: Tìm số tự nhiên có 3 chữ số, biết rằng nếu ta xóa chữ số hàng trăm đi ta được số mới giảm đi 7 lần so với số ban đầu. Hd: Gọi số phải tìm là abc , ( 0  a, b, c < 10, a  0). Theo bài ra ta có: abc = 7 bc a 100 = 6 bc   a 50 = 3 bc    a là bội của 3  a = 3, bc = 50 Vậy số phải tìm là 350 Bài 14:

16. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 16 a) Tính số chữ số đã dùng để viết các số hạng của dãy số đã cho kể từ số hạng đầu tiên đến số hạng 2001. Chữ số thứ 124 được dùng để viết dãy số đã cho là chữ số nào? b) Tính tổng của 203 số hạng đầu tiên của dãy số đã cho. Hd: a) [(96 – 11) : 5 + 1]  2 + [(996 – 101) : 5 + 1]  3] + 1  4 = 18  2 + 180  3 + 1  4 = 580. Ta có 18  2 < 124 < 180  3 nên chữ số thứ 124 thuộc dãy số có ba chữ số 101, 106, …, 996. Chữ số thứ 124 của dãy số đã cho là chữ số thứ 124 – 18  2 = 88 của dãy số 101, 106, …, 996. Ta có 88 : 3 = 29 (dư 1) nên chữ số thứ 88 dãy số 101, 106, …, 996 là chữ số thứ 1 của số hạng thứ 30 của dãy số 101, 106, …, 996. Số hạng thứ 30 là (30 – 1)  5 + 101 = 246. Vậy chữ số cần tìm là chữ số 2. b) Số hạng thứ 203 là (203 – 1)  5 + 11 = 1021. Tổng là (11 + 1021)  203 : 2 = 104748. Bài 9: Cho dãy số 2, 5, 8, 11, …, 2009. a) Dãy này có bao nhiêu số hạng? Số hạng thứ 99 là số hạng nào? b) Chữ số thứ 50 được dùng để viết dãy số đã cho là chữ số nào? Hd: a) Số các số hạng: (2009 – 2) : 3 + 1 = 670. Số hạng thứ 99 là: (99 – 1)  3 + 2 = 296. b) Dãy số 2, 5, 8 có 3 chữ số. Dãy số 11, 14, 17, …, 98 có [(98 – 11) : 3 + 1]  2 = 60 chữ số. Có 3 < 50 < 60 nên chữ số thứ 50 của dãy số đã cho thuộc dãy số 11, 14, 17, …, 98. Chữ số thứ 50 của dãy số đã cho là chữ số thứ 50 – 3 = 47 của dãy số 11, 14, 17, …, 98. Ta có 47 : 2 = 23 (dư 1) nên chữ số thứ 47 dãy số 11, 14, 17, …, 98 là chữ số thứ 1 của số hạng thứ 24 của dãy số 11, 14, 17, …, 98. Số hạng thứ 24 là (24 – 1)  3 + 11 = 80. Vậy chữ số cần tìm là chữ số 8. Bài 10: Cho dãy số 1, 5, 9, 13, … a) Chữ số thứ 135 được dùng để viết dãy số đã cho là chữ số nào? b) Tính tổng của 200 số hạng đầu tiên của dãy số đã cho. Hd: a) Dãy số 1, 5, 9, 13, 17, 21, …, 97 có 3 + [(97 – 13) : 4 + 1]  2 = 47 chữ số. Dãy số 101, 105, 109, …, 997 có [(997 – 101) : 4 + 1]  3 = 675 chữ số. Vì 47 < 135 < 675 nên chữ số thứ 135 phải nằm trong dãy số 101, 105, …, 997.

17. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 17 Chữ số thứ 135 của dãy số 101, 105, …, 997 là chữ số thứ 135 – 47 = 88 của dãy số 101, 105, …, 997. Ta có: 88 : 3 = 29 (dư 1) nên chữ số thứ 88 dãy số 101, 105, …, 997 là chữ số thứ 1 của số hạng thứ 30 của dãy số 101, 105, …, 997. Số hạng thứ 30 là (30 – 1)  4 + 101 = 217. Vậy chữ số cần tìm là chữ số 2. b) Số hạng thứ 200 là (200 – 1)  4 + 1 = 797. Tổng là (1 + 797)  200 : 2 = 79800. Bài 11: Cho dãy số 5, 8, 11, … a) Tính tổng của 205 số hạng đầu tiên của dãy số đã cho? b) Chữ số thứ 135 được dùng để viết dãy số đã cho là chữ số nào? Hd: a) Số hạng thứ 204 trong dãy số là: [(204 – 1)  3] + 5 = 620 Tổng của 204 số hạng đầu của dãy: (620 + 5)  102 = 62500 + 1250 = 63750 Tổng của 204 số hạng đầu của dãy: 63750 + 623 = 64373 b) Số có 1 chữ số trong dãy là: (8 – 5) : 3 + 1 = 2 Số có 2 chữ số trong dãy là: (98 – 11) : 3 + 1 = 30 Số có 3 chữ số trong dãy là: (998 – 111) : 3 + 1 = 330 Ta có 2  1 + 30  2 < 135 < 330  3 nên chữ số thứ 135 thuộc dãy số có ba chữ số 101, 104, …, 998. Chữ số thứ 135 của dãy số đã cho là chữ số thứ 135 – 30  2 – 2 = 63 của dãy số 101, 104, …, 998. Ta có 63 : 3 = 21 (dư 0) nên chữ số thứ 63 dãy số 101, 104, …, 998 là chữ số thứ 3 của số hạng thứ 21 của dãy số 101, 104, …, 998. Số hạng thứ 21 là (21 – 1)  3 + 101 = 161. Vậy chữ số cần tìm là chữ số 1 Bài 12: Tính tổng S = 10, 11 + 11, 12 + 12, 13 + ….. + 98, 99 + 99, 100 Hd: S = (10 + 11 + 12 + ….. + 98 + 99) + (0, 10 + 0, 11 + 0, 12 + ….. + 0, 98 + 0, 99) = [(99  100) : 2 – (9  10) : 2] + [(99  100) : 2 – (9  10) : 2 : 100] = 4905 + 49, 05 = 4954, 05 Bài 13: Tính tổng S = 1 – 2 + 3 – 4 + …… – 1000 + 1001 Hd: S = 1 + (3 – 2) + (5 – 4) + …… + (1001 – 1000) = 1 + 1 + 1 + ……+ 1 = 1 + [(1001 – 2) : 1 + 1] : 2 = 501 Bài 14: Cho dãy số 1 3 , 2 3 3 , 7, 1 10 3 , … a) Xác định số hạng thứ 2009 của dãy số đã cho?

18. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 18 b) Trong 2009 số hạng đầu của dãy có bao nhiêu số tự nhiên? Tính tổng của tất cả các số tự nhiên đó? Hd: a) Ta thấy dãy số trên là dãy số cách đều với khoảng cách d = 10 3 Vậy số hạng thứ 2009 trong dãy số trên là: 10 1 20081 (2009 – 1) + = 3 3 3  b) Số hạng thứ 2007 trong dãy số trên là: 10 1 (2007 – 1) + = 669 3 3  Dãy số tự nhiên có trong 2009 số hạng đầu của dãy là: 7, 17, 27, …, 669 Từ đây dễ dàng suy ra kết quả với dãy số tự nhiên cách đều Bài 15: a) Tìm x biết: (x + 1) + (x + 4) + (x + 7) + …… + (x + 28) = 155 b) Tính tổng: S = 9, 8 + 8, 7 + …… + 2, 1 – 1, 2 – 2, 3 – ….. – 7, 8 – 8, 9 Hd: a) Ta có: x + 1 + x + 4 + x + 7 + …… + x + 28 = 155 (x + x + ….. + x) + (1 + 4 + 7 + ….. + 28) = 155 10  x + 145 = 155 x = 1 b) Ta có: S = 9, 8 + 8, 7 + …… + 2, 1 – 1, 2 – 2, 3 – ….. – 7, 8 – 8, 9 = (2, 1 – 1, 2) + (3, 2 – 2, 3) + ….. (8, 7 – 7, 8) + (9, 8 – 8, 9) = 1, 1  8 = 8, 8 § 3. TOÁN VỀ TUỔI Bài 1: Năm nay, tuổi cô gấp 8 lần tuổi cháu. Mười hai năm sau, tuổi cô gấp 2, 4 lần tuổi cháu. Tính tuổi của hai cô cháu hiện nay. Hd: Hiệu số tuổi của hai cô cháu hiện nay là: 8 – 1 = 7 (lần tuổi cháu hiện nay) Hiệu số tuổi của hai cô cháu khi tuổi cô gấp 2, 4 lần tuổi cháu là 2, 4 – 1 = 1, 4 (lần tuổi cháu lúc đó) Vì hiệu số tuổi của 2 cô cháu không thay đổi theo thời gian nên: 7 lần tuổi cháu hiện nay = 1, 4 lần tuổi cháu lúc đó.

19. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 19 Hay cách khác: 1lần tuổi cháu hiện nay = 0, 2 lần tuổi cháu lúc đó Ta có sơ đồ: Tuổi cháu hiện nay là 12 : (5 – 1) 1 = 3 (tuổi) Tuổi cô hiện nay là 3  8 = 24 (tuổi) Bài 2: Hiện nay tuổi cha gấp 5 lần tuổi con. Trước đây 6 năm tuổi cha gấp 17 lần tuổi con.Tính tuổi của cha và của con hiện nay. Hd: Hiệu số tuổi của hai cha con hiện nay là: 5 – 1 = 4 (lần tuổi con hiện nay) Hiệu số tuổi của hai cha con khi tuổi cha gấp 17 lần tuổi con là 17 – 1 = 16 (lần tuổi con lúc đó) Vì hiệu số tuổi của 2 cha con không thay đổi theo thời gian nên: 4 lần tuổi con hiện nay = 16 lần tuổi con khi đó. Hay cách khác: 1lần tuổi con hiện nay = 4 lần tuổi con lúc đó Ta có sơ đồ: Tuổi con hiện nay là: 6 : (4 – 1)  4 = 8 (tuổi) Tuổi cô hiện nay là : 8  5 = 40 (tuổi) Bài 3: Năm nay tuổi của 2 cha con cộng lại bằng 36. Đến khi tuổi con bằng tuổi cha hiện nay thì tuổi con bằng 5 9 tuổi cha lúc đó. Tìm tuổi 2 cha con hiện nay. Hd: Nếu coi tuổi con sau này là 5 phần thì tuổi cha sau này là 9 phần như thế. Khi đó hiệu số tuổi của 2 cha con là 9 – 5 = 4 (phần) Vì hiện nay tuổi cha bằng tuổi con sau này nên hiện nay tuổi cha chiếm 5 phần mà hiệu số tuổi của 2 cha con không thay đổi theo thời gian (hiệu là 4 phần) nên số phần tuổi con là 5 – 4 = 1(phần). Do đó hiện nay số phần tuổi của 2 cha con là 5 + 1 = 6 (phần) Ta có sơ đồ: Tuổi cháu hiện nay: Tuổi cháu sau 12 năm: Tuổi con hiện nay: Tuổi con trước 6 năm: Tuổi cha sau này: 36 tuổiTuổi cha hiện nay: Tuổi con sau này: Tuổi con hiện nay:

20. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 20 Vậy tuổi con hiện nay là 36 : 6 = 6 (tuổi). Tuổi cha hiện nay là 36 – 6 = 30 (tuổi). Bài 4: Năm nay, tuổi bố gấp 2,2 lần tuổi con. Hai mươi lăm năm về trước, tuổi bố gấp 8,2 lần tuổi con. Hỏi khi tuổi bố gấp 3 lần tuổi con thì con bao nhiêu tuổi? Hd: Tuổi bố hiện nay hơn tuổi con số lần là: 2, 2 – 1 = 1,2 (lần tuổi con hiện nay). Tuổi bố cách đây 25 năm hơn tuổi con số lần là 8, 2 – 1 = 7,2 (lần tuổi con lúc đó). Vậy ta suy ra: 1,2 lần tuổi con hiện nay = 7,2 lần tuổi con lúc đó. Tuổi con hiện nay gấp tuổi con 25 năm trước số lần là: 7,2 : 1,2 = 6 (lần). Ta có sơ đồ: Tuổi con hiện nay là: 25 : (6 – 1)  6 = 30 (tuổi). Tuổi bố hiện nay là : 30  2,2 = 66 (tuổi). Hiệu số tuổi của 2 bố con hiên nay là: 66 – 30 = 36 (tuổi) Ta có hiệu số tuổi của 2 bố con khi tuổ khi bố gấp 3 lần tuổi con là 2 lần tuổi con khi đó. Do đó 2 lần tuổi con sau này = 36 tuổi Vậy tuổi con khi đó là: 36 : 2 = 18 (tuổi) Bài 5: Hiện nay tuổi cha gấp 4 lần tuổi con. Trước đây 6 năm tuổi cha gấp 13 lần tuổi con. Tính tuổi của cha và của con hiện nay Hd: Ta có: Hiệu số tuổi của 2 cha con hiên nay là 3 lần tuổi con hiện nay Hiệu số tuổi của 2 cha con trước đây 6 năm là 12 lần tuổi con khi đó Vậy: 3 lần tuổi con hiện nay = 12 lần tuổi con trước đây. Ta có sơ đồ: Tuổi con trước đây là 6 : (4 – 1)  1 = 2 (tuổi) Tuổi con hiện nay là: 2 + 6 = 8 (tuổi) Tuổi cha hiện nay là : 8  4 = 32 (tuổi). Bài 6: Tuổi bà năm nay gấp 4,2 lần tuổi cháu. Mười năm về trước, tuổi bà gấp 10,6 lần tuổi cháu. Tính tuổi bà và tuổi cháu hiện nay. Hd: Tuổi con hiện nay: Tuổi con trước đây: 25 6 Tuổi con trước đây: Tuổi con hiện nay:

21. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 21 Vì hiệu số tuổi của hai bà cháu không thay đổi theo thời gian nên 3,2 lần tuổi cháu hiện nay = 9,6 lần tuổi cháu 10 năm trước. Hay tuổi cháu hiện nay = 3 lần tuổi cháu 10 năm trước. Vậy tuổi cháu hiện nay là: (10 : 2)  3 = 15 (tuổi). Tuổi bà hiện nay là :15  4,2 = 63 (tuổi) Bài 7: Năm nay, tuổi bác gấp 3 lần tuổi cháu. Mười lăm năm về trước, tuổi bác gấp 9 lần tuổi cháu. Hỏi khi tuổi bác gấp 2 lần tuổi cháu thì cháu bao nhiêu tuổi? Hd: Tuổi bác hiện nay hơn tuổi cháu số lần là: 3 – 1 = 2 (lần tuổi cháu hiện nay). Tuổi bác cách đây 15 năm hơn tuổi cháu số lần là 9 – 1 = 8 (lần tuổi cháu lúc đó). Vậy suy ra: 2 lần tuổi cháu hiện nay = 8 lần tuổi cháu lúc đó. Hay: 1 lần tuổi cháu hiện nay = 4 lần tuổi cháu lúc đó. Tuổi cháu hiện nay là: 15 : (4 – 1)  4 = 20 (tuổi). Tuổi bác hiện nay là: 20  3 = 60 (tuổi). Khi tuổi bác gấp 2 lần tuổi cháu thì tuổi cháu là: 40 : 2  1 = 40 (tuổi). Bài 8: Năm nay, tuổi mẹ gấp 2,5 lần tuổi con. Nhưng 6 về trước, tuổi mẹ gấp 4 lần tuổi con. Tính tuổi của 2 mẹ con hiện nay? Hd: Hiệu số tuổi của 2 mẹ con hiện nay là: 2,5 – 1, 5 = 1,5 (lần tuổi con hiện nay). Hiệu số tuổi của 2 mẹ con trước đây 6 năm là: 4 – 1 = 3 (lần tuổi con lúc đó). Vậy suy ra: 1, 5 lần tuổi con hiện nay = 3 lần tuổi con trước đây. Hay: 1 lần tuổi cháu hiện nay = 2 lần tuổi cháu lúc đó. Ta có sơ đồ: Tuổi con hiện nay là: 6 : (2 – 1)  2 = 12 (tuổi). Tuổi mẹ hiện nay là: 12  2,5 = 30 (tuổi). Bài 9: Năm nay anh 27 tuổi. Biết rằng năm mà tuổi của anh bằng tuổi của em hiện nay thì tuổi của anh chỉ bằng nửa tuổi của anh khi đó. Tính tuổi của em hiện nay? Hd: Theo bài ra ta có: Tuổi của anh trước đây gấp 2 lần tuổi của em trước đây Tuổi của em hiện nay gấp 2 lần tuổi của em trước đây Hiệu số tuổi của 2 anh em trước đây tuổi bằng 1 lần tuổi của em trước đây. Mà hiệu số tuổi của 2 người không đổi nên suy ra: Tuổi của anh hiện nay gấp (2 + 1) lần tuổi của em trước đây. Do đó có sơ đồ sau: Tuổi em trước đây: Tuổi anh trước đây: Tuổi em hiện nay: Tuổi anh hiện nay: 6 Tuổi con trước đây: Tuổi con hiện nay:

22. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 22 Tuổi của em hiện nay là: 27 : 3  2 = 18 (tuổi) Bài 10: Hiện nay tổng số tuổi của 2 anh và em là 20 tuổi. Biết rằng tuổi của em hiện nay gấp 2 lần tuổi của em khi anh bằng tuổi em hiện nay. Tính tuổi 2 người hiện nay? Hd: Theo bài ra ta có: Tuổi của em hiện nay gấp 2 lần tuổi của em trước đây Tuổi của anh trước đây gấp 2 lần tuổi của em trước đây Hiệu số tuổi của 2 anh em trước đây tuổi bằng 1 lần tuổi của em trước đây. Mà hiệu số tuổi của 2 người không đổi nên suy ra: Tuổi của anh hiện nay gấp (2 + 1) lần tuổi của em trước đây. Do đó có sơ đồ sau: Tuổi của em hiện nay là: 20 : (3 + 2) 2 = 8 (tuổi) Tuổi của anh hiện nay là: 20 – 8 = 12 (tuổi) Bài 11: Hiện nay tổng số tuổi của 2 anh và em là 15 tuổi. Biết rằng khi tuổi của em bằng tuổi của anh hiện nay thì tuổi của anh gấp 1,5 lần tuổi của em khi đó. Tính tuổi 2 người hiện nay? Hd: Theo bài ra ta có: Tuổi của anh sau này gấp 1,5 lần tuổi của em sau này Tuổi của anh hiện nay bằng tuổi của em sau này Hiệu số tuổi của 2 anh em sau này tuổi bằng 0,5 lần tuổi của em sau này. Mà hiệu số tuổi của 2 người không đổi nên suy ra: Tuổi của em hiện nay bằng 0,5 lần tuổi của em sau này. Do đó có sơ đồ sau: Tuổi của em hiện nay là: 15 : (1 + 2) 2 = 6 (tuổi) Tuổi của anh hiện nay là: 15 – 6 = 9 (tuổi) Bài 12: Hiện nay An nhiều hơn Bình 14 tuổi. Tính tuổi của 2 người hiện nay, biết rằng khi tuổi của Bình bằng tuổi của An hiện nay thì tuổi của An bằng 3 5 lần tuổi của Bình khi đó. Tuổi em trước đây: Tuổi anh trước đây: Tuổi em hiện nay: Tuổi anh hiện nay: 20 Tuổi em hiện nay: Tuổi anh hiện nay: Tuổi em sau này: Tuổi anh sau này: 15

23. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 23 Hd: Theo bài ra ta có: Tuổi của An sau này bằng 3 5 lần tuổi của Bình sau này Hiệu số tuổi của 2 người sau này bằng 5 2 – 1 = 3 3 lần tuổi của Bình sau này Tuổi của An hiện nay bằng 1 lần tuổi của Bình sau này Suy ta tuổi của Bình hiện nay bằng 2 1 1 – = 3 3 lần tuổi của Bình sau này Vậy ta có sơ đồ như sau: Theo sơ đồ trên ta có: Tuổi của An hiện nay là: 14 : (3 – 1) × 3 = 21 (tuổi) Tuổi của Bình hiện nay là: 14 : (3 – 1) × 1 = 7 (tuổi) Bài 13: Hiện nay Hùng nhiều hơn Minh 12 tuổi. Tính tuổi của 2 người hiện nay, biết rằng khi tuổi của Minh bằng tuổi của Hùng hiện nay thì tuổi của Minh bằng 5 3 lần tuổi của Hùng khi đó. Hd: Theo bài ra ta có: Tuổi của Hùng sau này bằng 3 5 lần tuổi của Minh sau này Hiệu số tuổi của 2 người sau này bằng 5 2 – 1 = 3 3 lần tuổi của Minh sau này Tuổi của Hùng hiện nay bằng 1 lần tuổi của Minh sau này Suy ta tuổi của Minh hiện nay bằng 2 1 1 – = 3 3 lần tuổi của Minh sau này Vậy ta có sơ đồ như sau: Theo sơ đồ trên ta có: Tuổi của Hùng hiện nay là: 12 : (3 – 1) × 3 = 18 (tuổi) Tuổi của Minh hiện nay là: 12 : (3 – 1) × 1 = 6 (tuổi) Tuổi Bình hiện nay: Tuổi An hiện nay: Tuổi Bình sau này: Tuổi An sau này: 14 Tuổi Minh hiện nay: Tuổi Hùng hiện nay: Tuổi Minh sau này: Tuổi Hùng sau này: 12

24. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 24 Bài 14: Hiện nay tuổi của bố gấp 4 lần tuổi của con và tổng số tuổi của 2 bố con là 50 tuổi. Hỏi sau bao nhiêu năm nữa tuổi bố gấp 2 lần tuổi con? Hd: Theo bài ra ta có: Tuổi của bố hiện nay là: 50 : (4 + 1) × 4 = 40 (tuổi) Tuổi của con hiện nay là: 50 : (4 + 1) × 1 = 10 (tuổi) Hiệu số tuổi của 2 bố con hiện nay là 40 – 10 = 30 (tuổi) Hiệu số tuổi của 2 bố con sau này bằng 1 lần tuổi của con sau này Mà hiệu số tuổi của 2 người không đổi theo thời gian nên suy ra: 1 lần tuổi của con sau này bằng 30 tuổi. Do đó có sơ đồ về mối quan hệ giữa tuổi con hiện nay và sau này như sau: Tuổi của con hiện nay là: 20 : (3 – 1) 1 = 10 (tuổi) Vậy số năm sau đó để tuổi bố gấp 2 lần tuổi con là: 30 – 10 = 20 (năm) Bài 15: Hiện nay tuổi của bố gấp 4 lần tuổi của con và sau 20 năm nữa tuổi của bố gấp 2 lần tuổi con. Tính tuổi của hai bố con hiện nay? Hd: Theo bài ra ta có: Hiệu số tuổi của 2 bố con hiện nay bằng 3 lần tuổi của con hiện nay Hiệu số tuổi của 2 bố con sau 20 năm bằng 1 lần tuổi của con khi đó Mà hiệu số tuổi của 2 người không đổi theo thời gian nên suy ra: 3 lần tuổi của con hiện nay bằng 1 lần tuổi của con sau 20 năm. Do đó có sơ đồ về mối quan hệ giữa tuổi con hiện nay và sau này như sau: Tuổi của con hiện nay là: 20 : (3 – 1) 1 = 10 (tuổi) Tuổi của bố hiện nay là: 10 × 4 = 40 (tuổi) Bài 16: Hiện nay tổng số tuổi của 2 bố con là 50 tuổi gấp và biết rằng sau 20 năm nữa tuổi của bố gấp 2 lần tuổi con. Tính tuổi của hai bố con hiện nay? Hd: Theo bài ra ta có: Tổng số tuổi của 2 bố con hiện nay bằng 50 tuổi Vậy tổng số tuổi của 2 bố con sau 20 năm là: 2 × 20 + 50 = 90 (tuổi) Tuổi con hiện nay: Tuổi con sau 20 năm: 20 năm

25. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 25 Mà sau 20 năm tuổi bố gấp 2 lần tuổi con. Như vậy ta đã đưa bài toán về dạng toán tìm 2 số khi biết tổng bằng 90 và tỷ số là 1 2 . Do đó ta tính được tuổi con sau 20 năm như sau: Tuổi của con sau 20 năm là: 90 tuổi : ( 2 + 1) × 1 = 30 (tuổi) Tuổi của con hiện nay là: 30 – 20 = 10 (tuổi) Tuổi của bố hiện nay là: 50 – 10 = 40 (tuổi) Bài 17: Hiện nay chị hơn em 7 tuổi. Biết rằng khi tuổi của em bằng tuổi của chị hiện nay thì tuổi của chị gấp 1,5 lần tuổi của em khi đó. Tính tuổi 2 người hiện nay? Hd: Theo bài ra ta có: Tuổi của chi sau này gấp 1,5 lần tuổi của em sau này Tuổi của chị hiện nay bằng tuổi của em sau này Hiệu số tuổi của 2 chị em sau này tuổi bằng 0,5 lần tuổi của em sau này. Mà hiệu số tuổi của 2 người không đổi, nên suy ra: Tuổi của em hiện nay bằng 0,5 lần tuổi của em sau này. Do đó có sơ đồ sau: Tuổi của em hiện nay là: 7 : (2 – 1) 1 = 7 (tuổi) Tuổi của anh hiện nay là: 7 + 7 = 14 (tuổi) Bài 18: Năm nay chị 25 tuổi. Biết rằng năm mà tuổi của chị bằng tuổi của em hiện nay thì tuổi của em chỉ bằng 1 3 tuổi của chị khi đó. Tính tuổi của em hiện nay? Hd: Theo bài ra ta có: Tuổi của chị trước đây gấp 3 lần tuổi của em trước đây Tuổi của em hiện nay gấp 3 lần tuổi của em trước đây Hiệu số tuổi của 2 chị em trước đây tuổi bằng 2 lần tuổi của em trước đây. Mà hiệu số tuổi của 2 người không đổi nên suy ra: Tuổi của chị hiện nay gấp (3 + 2) lần tuổi của em trước đây. Do đó có sơ đồ sau: Tuổi của em hiện nay là: 25 : 5  3 = 15 (tuổi) Tuổi em hiện nay: Tuổi chị hiện nay: Tuổi em sau này: Tuổi chị sau này: 7 Tuổi em trước đây: Tuổi chị trước đây: Tuổi em hiện nay: Tuổi chị hiện nay: 25

26. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 26 Bài 19: Năm nay em 4 tuổi. Biết rằng năm mà tuổi của em bằng tuổi của chị hiện nay thì tuổi của em chỉ bằng 3 5 tuổi của chị khi đó. Tính tuổi của chị hiện nay? Hd: Theo bài ra ta có: Tuổi của chị sau này bằng 5 3 lần tuổi của em sau này Tuổi của chị hiện nay bằng 1 lần tuổi của em sau này Hiệu số tuổi của 2 chị em sau này tuổi bằng 5 2 – 1 = 3 3 lần tuổi của em sau này. Mà hiệu số tuổi của 2 người không đổi nên suy ra: Tuổi của em hiện nay bằng 2 1 1 – = 3 3 lần tuổi của em sau này. Do đó có sơ đồ sau: Tuổi của chị hiện nay là: 4 : 1  3 = 12 (tuổi) Bài 20: Hiện nay chị hơn em 6 tuổi. Biết rằng khi tuổi của em bằng tuổi của chị hiện nay thì tuổi của chị gấp 3 lần tuổi của em hiện nay. Tính tuổi 2 người hiện nay? Hd: Theo bài ra ta có: Tuổi chị hiện nay bằng tuổi em sau này. Hiệu số tuổi của 2 chị em hiện nay và sau này đều bằng 6 tuổi. Do đó suy ra: Suy ra: Tuổi của em hiện nay + 12 tuổi = Tuổi của chị sau này Mà ta biết rằng: Tuổi của chị sau này gấp 3 lần tuổi em hiện nay. Vậy suy ra: Tuổi của em hiện nay + 12 tuổi = 3 × Tuổi của em hiện nay  2 × Tuổi của em hiện nay = 12 (tuổi)  Tuổi của em hiện nay là: 12 : 2 = 6 (tuổi) Tuổi của chị hiện nay là: 6 + 6 = 12 (tuổi) Bài 21: Tính tuổi của hai anh em hiện nay. Biết rằng 62,5% tuổi anh hơn 75% tuổi em là 2 tuổi và 50% tuổi anh hơn 37,5% tuổi em là 7 tuổi Hd: Theo bài ra ta có: 50% tuổi anh hơn 37,5% tuổi em là 7 tuổi  100% tuổi anh hơn 75% tuổi em là 14 tuổi Mà 62,5% tuổi anh hơn 75% tuổi em là 2 tuổi Tuổi em hiện nay: Tuổi chị hiện nay: Tuổi em sau này: Tuổi chị sau này: 4 Tuổi của em hiện nay + 6 tuổi = Tuổi của em sau này Tuổi của em sau này + 6 tuổi = Tuổi của chị sau này

27. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 27  100% – 62,5% = 37,5% tuổi anh là 14- 2 = 12 tuổi Vậy tuổi anh là: 12 : 37,5 × 100 = 32 (tuổi) 75% tuổi em hiện nay là: 32 – 14 = 18 (tuổi) Tuổi em hiện nay là: 18 : 75 × 100 = 24 (tuổi) § 4. TOÁN CHUYỂN ĐỘNG ĐỀU Bài 1: Hai thành phố cách nhau 186 km. Lúc 6 giờ một người đi xe máy từ A với vận tốc 30 km/giờ bề B, lúc 7 giờ một người đi xe máy từ B với vận tốc 35 km/giờ về A. Hỏi lúc mấy giờ thì hai người gặp nhau và chỗ gặp nhau cách A bao nhiêu km? Hd: Khi người thứ 2 xuất phát thì người thứ nhất cách B là 186 – 30 = 156 (km). Quãng đường 2 người đi được trong 1 giờ là 30 + 35 = 65 (km). Thời gian để 2 người gặp nhau là 242)( 5 2 265:156 h h  phút. 7h + 2h 24 = 9h 24. Vậy hai người gặp nhau lúc 9 giờ 24 phút. Quãng đường từ A đến địa điểm gặp nhau là )(10230 5 2 230 km . Bài 2: Một ô tô chạy từ A đến B. Nếu chạy mỗi giờ 60 km thì ô tô sẽ đến B lúc 14 giờ. Nếu chạy mỗi giờ 40 km thì ô tô sẽ đến B lúc 16 giờ. Hãy tính quãng đường AB và tìm xem trung bình mỗi giờ ô tô phải chạy bao nhiêu km để đến B lúc 15 giờ? Hd: Do trên cùng một quãng đường vận tốc tăng lên bao nhiêu lần thì thời gian giảm đi bấy nhiêu lần nên ta có: Thời gian đi với vận tốc 40 km/h gấp 1, 5 lần thời gian đi với vận tốc 40 km/h. Ta có sơ đồ sau: Quãng đường AB dài là 60  2  2 = 240 (km). Để đến B lúc 15 giờ, mỗi ôtô phải chạy 240 : 5 = 48 (km) Bài 3: Một ô tô chạy từ A đến B mất 2 giờ. Một xe máy chạy từ B đến A mất 3 giờ. Hãy tính quãng đường AB, biết vận tốc của ô tô hơn vận tốc của xe máy là 20km/giờ. Nếu hai xe khởi hành cùng một lúc thì chúng gặp nhau tại cùng một địa điểm cách A bao nhiêu km? Hd: 30 km 156 km C BA 2 giờ Thời gian đi với vận tốc 60 km/h: Thời gian đi với vận tốc 40 km/h:

28. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 28 Tỉ số thời gian của ô tô và xe máy là 2 3 . Do trên cùng một quãng đường thời gian tăng lên bao nhiêu lần thì vận tốc giảm đi bấy nhiêu lần nên ta có sơ đồ: Vận tốc xe máy: Vận tốc ô tô: Vận tốc ô tô là : 20  3 = 60 (km/giờ). Vận tốc xe máy là 60 – 20 = 40 (km/giờ). Quãng đường AB là 60  2 = 120 (km). Nếu hai xe khởi hành cùng một lúc thì sẽ gặp nhau sau một thời gian là 120 : (60 + 40) = 1,2 (giờ) Địa điểm gặp nhau cách A là 60  1,2 = 70 (km). Bài 4: Một ô tô chạy từ A đến B. Nếu chạy mỗi giờ 55 km thì ô tô sẽ đến B lúc 15 giờ. Nếu chạy mỗi giờ 45 km thì ô tô sẽ đến B lúc 17 giờ. Hãy tính quãng đường AB và tìm xem trung bình mỗi giờ ô tô phải chạy bao nhiêu km để đến B lúc 16 giờ? Hd: Tỉ số vận tốc của ô tô và xe máy đi trên quãng đường AB là 55 11 45 9  . Do trên cùng một quãng đường vận tốc tăng lên bao nhiêu lần thì thời gian giảm đi bấy nhiêu lần nên ta có: Thời gian đi với vận tốc 45 km/h bằng 11 9 lần thời gian đi với vận tốc 55 km/h . Do đó ta có sơ đồ: Thời gian đi với vận tốc 55 km/h: Thời gian đi với vận tốc 45 km/h: Quãng đường AB dài là 55  (2 : 2)  9 = 495 (km). Để đến B lúc 15 giờ, mỗi ô tô phải chạy 495 : 10 = 49,5 (km). Bài 5: Một ô tô đi từ A qua B đến C hết 8 giờ. Thời gian đi từ A đến B gấp 3 lần đi từ B đến C và quãng đường từ A đến B dài hơn từ B đến C là 130 km. Biết rằng muốn đi được đúng thời gian đã định, từ B đến C ô tô phải tăng vận tốc thêm 5 km một giờ. Hỏi quãng đường BC dài bao nhiêu km? Hd: Theo bài ra ta có:Trên quãng đường AB = BC + 130 km ô tô đi với vận tốc v1 trong 6 giờ, còn trên quãng đường BC ô tô đi với vận tốc v2 trong 2 giờ. Do đó suy ra ô tô đi với vận tốc v1 trong 2 giờ đi được quãng đường bằng quãng đường BC bớt đi là: 5  2 = 10 km Vậy ô tô đi với vận tốc v1 trong 4 giờ đi được quãng đường tương ứng là: 130 + 10 = 140 (km). Vận tốc ban đầu của ô tô là: 140 : 4 = 35 (km/h) Quãng đường BC là 80 km. 2 giờ 20 km/h A v1 8 giờ v2= v1+5km B C

29. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 29 Bài 6: Lúc 5 giờ 30 phút, một người đi xe máy khởi hành từ tỉnh A với vận tốc 40km/giờ và đến tỉnh B lúc 8 giờ 15 phút, người đó nghỉ lại tỉnh B là 30 phút rồi quay về tỉnh A với vận tốc cũ. Lúc 7 giờ 45 phút một người khác đi xe đạp khởi hành từ tỉnh A đến tỉnh B với vận tốc 10km/giờ. Hỏi hai người gặp nhau lúc mấy giờ và chỗ gặp nhau cách tỉnh B bao nhiêu km? Hd: Thời gian người đi xe máy từ tỉnh A đến tỉnh B là: 8 giờ 15 phút – 5 giờ 30 phút = 2 giờ 45 phút = 2,75 giờ. Quãng đườmg từ A đến B là: 40  2,75 = 110 (km) Người đi xe máy rời tỉnh B lúc 8 giờ 15 phút + 30 phút = 8 giờ 45 phút Thời gian người đi xe đạp đi từ 7 giờ 45 phút đến 8 giờ 45 phút là: 8 giờ 45 phút – 7 giờ 45 phút = 1 giờ. Đến 8 giờ 45 phút người đi xe đạp đã đi được 10km. Lúc 8 giờ 45 phút hai người cách nhau là 110 – 10 = 100 (km). Thời gian hai người gặp nhau là: 100 : (40 + 10) = 2 (giờ) Hai người gặp nhau lúc 8 giờ 45 phút + 2 = 10 giờ 45 phút. Chỗ gặp nhau cách B là: 40 × 2 = 80 (km). Bài 7: Xe thứ nhất đi từ A đến B hết 3 giờ 20 phút. Xe thứ hai đi từ B đến A hết 2 giờ 48 phút. Biết rằng hai xe cùng khởi hành và sau 1 giờ 15 phút thì chúng còn cách nhau 25 km. Tính vận tốc mỗi xe. Hd: Đổi đơn vị thời gian: 3 giờ 20 phút = 200 phút = 10/3 giờ; 2 giờ 48 phút = 168 phút = 14/5 giờ; 1 giờ 15 phút = 75 phút; + Tính phân số chỉ phần đường đi được sau 75 phút của hai xe là:  200 75  168 75 28 23 56 25 8 3  (quãng đường AB). + Tính phân số chỉ phần đường còn lại là 28 23 5 28 28 28   (quãng đường AB). + Vì 5 28 quãng đường AB biểu thị 25km nên quãng đường AB dài là: 25 : 5  28 = 140 (km). + Vận tốc của xe thứ nhất là )/(42 3 10 :140 hkm . + Vận tốc của xe thứ hai là )/(50 3 14 :140 hkm . Bài 8: Hai bạn Việt và Nam đi xe đạp xuất phát cùng lúc từ A đến B, Việt đi với vận tốc 12 km/giờ, Nam đi với vận tốc 10 km/giờ. Đi được 1, 5 giờ, để đợi Nam, Việt đã giảm vận tốc xuống còn 7 km/giờ. Tính quãng đường AB, biết rằng lúc gặp nhau cũng là lúc Việt và Nam cùng đến B. Hd:

30. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 30 Sau 1,5 giờ Việt cách xa Nam là 12  1, 5 – 10  1, 5 = 18 – 15 = 3 (km). Lúc đó Việt đi với vận tốc 7 km/giờ và Nam đi với vận tốc 10 km/giờ nên thời gian chuyển động để Nam đuổi kịp Việt là 3 : (10 – 7) = 1 (giờ). Quãng đường AB dài là 18 + 7  1 = 25 (km). Bài 9: Một ca nô xuôi một khúc sông hết 3 giờ và ngược khúc sông đó hết 5 giờ. Tính chiều dài khúc sông, biết vận tốc dòng nước là 50 m/ ph. Hd: Ta thấy: Mỗi giờ ca nô xuôi dòng được 1 3 khúc sông và mỗi giờ ca nô ngược dòng được 1 5 khúc sông. Mỗi giờ dòng nước xuôi được 1 1 1 ( ) : 2 3 5 15   (khúc sông) Thời gian dòng nước xuôi từ A đến B là 1 1 : 15 15  (giờ) Vì 50m/ph = 3km/h nên khúc sông dài là 3  15 = 45(km). Bài 10: Một đoàn tàu chạy ngang qua một cột điện hết 10 giây. Cùng với vận tốc đó, đoàn tàu chạy ngang qua một đường hầm dài 210 m hết 52 giây. Tính chiều dài và vận tốc tàu. Hd: Trong khoảng thời gian 10 giây tàu đi được quãng đường là chiều dài tàu Trong khoảng thời gian 52 giây tàu đi được quãng đường là chiều dài tàu cộng với chiều dài hầm(210 m). Vậy thời gian để tàu đi được quãng đường 210 m là: 52 – 8 = 42 (giây). Vận tốc tàu là: 210 : 42 = 5(m/s) (= 18km/h) Chiều dài đoàn tàu là: 5  10 = 40 (m). Bài 11: Một hành khách ngồi trên một chiếc xe lửa đang chay với vận tốc 36km/h nhìn thấy một chiếc xe lửa tốc hành dài 75 mét đi ngược chiều qua mặt mình hết 3 giây. Tính vận tốc của xe lửa tốc hành. Hd: Đổi đơn vị: 36 km/h = 10 m/s Trong khoảng thời gian 3 giây người ngồi trên xe lửa đi được quãng đường là: 10  3 = 30 (m) Trong khoảng thời gian 3 giây xe lửa tốc hành đi được quãng đường là chiều dài tàu trừ đi 30 m.Vậy vận tốc của xe lửa tốc hành là: (75 – 30) : 3 = 15(m/s) = 54( km/h) Bài 12: 3 s 3 s 75 m 30 m

31. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 31 Một xe lửa chạy qua một cầu dài 181 mét hết 47 giây. Biết cùng vận tốc ấy xe lửa lướt qua một người đi bộ ngược chiều trong 9 giây. Tính vận tốc và chiều dài xe lửa, biết vận tốc người đi bộ là 1 m/s. Hd: Trong khoảng thời gian 47 giây xe lửa đi được quãng đường là chiều dài xe lửa cộng chiều dài cầu (181m) Trong khoảng thời gian 9 giây xe lửa đi được quãng đường là chiều dài tàu bớt đi 9 m, tức là nếu thêm vào 9 m thì xe lửa đi được quãng đường là chiều dài xe lửa. Vậy thời gian để tàu đi được quãng đường (181 + 9) = 190 m là: 47 – 9 = 38 (s) Vận tốc của xe lửa là: 190 : 38 = 5 (m/s) = 18 (km/h) Chiều dài của xe lửa là: 5  9 = 45 (m) Bài 13: Một người đi xe máy từ A tới B hết một khoảng thời gian dự định nào đó. Biết rằng nếu đi với vận tốc 30 km/h thì đến B sớm 1 giờ, nếu đi với vận tốc 20 km/h thì đến B chậm 1 giờ. Tính quãng đường AB? Hd: Trên cùng quãng đường AB ta có thời gian tỷ lệ nghịch với vận tốc: 1 2 2 1 t v 20 = = t v 30 Mà dễ thấy: t2 – t1 = 2 (h). Đến đây đưa về bài toán tìm 2 số có tỷ số là 2 3 và có hiệu bằng 2. Suy ra được quãng đường AB là: 120 km. Bài 14: Một ôtô đi từ thành phố A tới thành phố B hết 10 giờ. Lúc đầu ôtô đi với vận tốc 40 km/h, khi tới vị trí còn cách 100 km nữa được nửa quãng đường thì ôtô tăng vận tốc lên thành 60 km/h để về đến B đúng hẹn. Tính vận tốc trung bình của ôtô đi từ A tới B? Hd: 9 s 9 s 9 m 47 s 181 m v1=30 km ? km 20 km 30 km v2=20 km A BC D B ? km 100 kmA CD 100 km E t1, v1 =40km/h t2, v2 =60km/h

32. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 32 Gọi C là điểm giữa quãng đường AB, D là điểm thuộc đoạn AC sao cho DC = 100 km. Lấy điểm E thuộc đoạn CB sao cho CE = 100 km. Dễ dàng suy ra AD = EB. Trên 2 quãng đường bằng nhau này ta có thời gian tỷ lệ nghịch với vận tốc, tức là: 1 2 2 1 t v 60 = = t v 40 Mà dễ thấy: 1 2 200 t + t = 60 . Từ đây dễ dàng tính được t1, t2 , suy ra quãng đường AD và quãng đường AB bằng 520 km. Bài 15: Hai vòi nước cùng chảy vào 1 bể không chứa nước sau 12 giờ đầy bể. Biết rằng lượng nước mỗi giờ vòi 1 chảy vào bể bằng 1, 5 lần lượng nước vòi 2 chảy vào bể. Hỏi mỗi vòi chảy một mình trong bao lâu sẽ đầy bể? Hd: Theo bài ra ta có: + v1 = 1, 5  v2 + v1 + v2 = 1 12 Từ đây dễ dàng tính được 1 1 v 20  (bể)và 2 1 v 30  (bể) Vậy suy ra vòi 1chảy một mình trong 20 giờ sẽ đầy bể, vòi 2 chảy một mình trong 30 giờ sẽ đầy bể. Bài 16: Một vòi nước chảy vào 1 bể không chứa nước, cùng lúc đó có vòi chảy ra. Biết rằng lượng nước mỗi giờ vòi chảy ra bằng 4 5 lần lượng nước vòi chảy vào bể và sau 5 giờ lượng nước trong bể đạt tới 1 8 dung tích của bể. Hỏi nếu không có vòi chảy ra mà chỉ có vòi chảy vào thì trong thời gian bao lâu sẽ đầy bể? Hd: Theo bài ra ta có: + vra = 4 5  vvào + vvào – vra = 1 40 Từ đây dễ dàng tính được vvào = 1 40  5 = 1 8 (bể) Vậy suy ra vòi vào chảy một mình trong 8 giờ sẽ đầy bể. Bài 17:

33. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 33 Người ta dùng hai vòi nước cùng chảy vào 1 bể không chứa nước. Nếu cho 2 vòi cùng chảy vào bể thì sau 3 giờ đầy bể. Nếu cho vòi 1 chảy trong 2 giờ và vòi 2 chảy trong 5 giờ thì cũng đầy bể. Hỏi mỗi vòi chảy một mình trong bao lâu sẽ đầy bể? Hd: Theo bài ra ta có tổng vận tốc của 2 vòi là: v1 + v2 = 1 3 (bể) Lượng nước 2 vòi cùng chảy trong 2 giờ là: 1 2 2 = 3 3  (bể) Lượng nước vòi 2 chảy trong 3 giờ là: 2 1 1 – = 3 3 (bể) Vận tốc của vòi 2 là: 1 1 : 3 = 3 9 (bể) Vận tốc của vòi 1 là: 1 1 2 – = 3 9 9 (bể) Bài 18: Một chiếc đồng hồ 3 kim để bàn đang chạy, ta thấy lúc 1 giờ đúng thì kim giờ trỏ số 1 còn kim phút trỏ số 12. Hỏi khoảng thời gian gần nhất để 2 kim giờ và kim phút trùng nhau? Cho biết thời điểm đó là mấy giờ? Vậy khoảng thời gian gần nhất để 2 kim giờ và kim phút trùng nhau là: 1 1 1 : [1 – ] = 12 12 11 (giờ) Thời điểm gần nhất để 2 kim giờ và kim phút trùng nhau là: 1 1 + 1 = 1 11 11 (giờ) Bài 19: Một chiếc đồng hồ 3 kim để bàn đang chạy, ta thấy lúc 1 giờ đúng thì kim giờ trỏ số 1 còn kim phút trỏ số 12. Hỏi khoảng thời gian gần nhất để 2 kim giờ và kim phút vuông góc với nhau? Cho biết thời điểm đó là mấy giờ? Hd: Gọi vận tốc kim giờ là vh, vận tốc kim phút là vf, ta có: vh = 1 12 vòng/h, vf = 1 vòng/h Khoảng cách giữa 2 kim lúc 1 giờ đúng là 1 12 vòng Hd: Gọi vận tốc kim giờ là vh, vận tốc kim phút là vf, ta có: vh = 1 12 vòng/h, vf = 1 vòng/h Khoảng cách giữa 2 kim lúc 1 giờ đúng là 1 12 vòng

34. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 34 Khoảng cách giữa 2 kim lúc 2 kim vuông góc là 1 4 vòng Vậy khoảng thời gian gần nhất để 2 kim giờ và kim phút vuông góc với nhau tính từ lúc trùng nhau là: 1 1 3 : [1 – ] = 4 12 11 (giờ) Vậy khoảng thời gian gần nhất để 2 kim giờ và kim phút vuông góc với nhau tính từ lúc 1 giờ đúng là: 3 1 4 + = 11 11 11 (giờ) Thời điểm gần nhất để 2 kim giờ và kim phút vuông góc với nhau là: 4 4 + 1 = 1 11 11 (giờ) Bài 20: Đường sông từ thành phố A đến thành phố B ngắn hơn đường bộ 10 km. Đi từ A đến B ca nô đi hết 3 giờ 20 phút, còn ô tô đi hết 2 giờ.Tính vận tốc của ca nô và ô tô, biết vận tốc của ca nô kém vận tốc ô tô 17 km/h. Hd: Sau 2 giờ ca nô tới vị trí còn cách B tính theo đường bộ là: 17 × 2 = 34 (km) Sau 2 giờ ca nô tới vị trí còn cách B tính theo đường sông là: 34 – 10 = 24 (km) Vận tốc của ca nô là: 24 : 1 giờ 20 = 18 (km/h) Bài 21: Anh Hùng đi xe đạp từ nhà đến Hà Nội theo con đường dài 48 km. Lúc trở về anh Hùng đi theo đường tắt dài 35 km. Đường tắt khó đi nên vận tốc lúc về chỉ bằng 5 6 vận B 1/12 A DC 1/4 E 10 km Đường bộ: A BC A Đường sông: B 2 giờ Ô tô Ca nô 2 × 17 = 34 km 1 giờ 20

35. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 35 tốc lúc đi, tuy nhiên thời gian lúc về vẫn ít hơn thời gian lúc đi là 1 2 giờ. Tính vận tốc lúc đi của anh Hùng? Hd: Quy về cùng thời gian lúc về của anh Hùng: + Thời gian lúc về, vận tốc lúc về thì anh Hùng đi được quãng đường 35 km. + Thời gian lúc về, vận tốc đi (vận tốc lúc về bằng 5 6 vận tốc lúc đi) thì anh Hùng đi được quãng đường bằng bao nhiêu km? Vì trong cùng thời gian thì quãng đường tỷ lệ thuận với vận tốc, nên ta có quãng đường anh Hùng đi được trong cùng thời gian lúc về và với vận tốc lúc đi là: 35 : 5 6 = 42 (km) Vận tốc của anh Hùng lúc về là: (48 – 42) : 1 2 = 12 (km/h) Bài 22: Nhà anh H cách trung tâm thành phố 175 km, nhà anh T cách trung tâm thành phố 220 km. Biết vận tốc tới trung tâm thành phố của anh H chỉ bằng 7 8 vận tốc của anh T, tuy nhiên thời gian tới trung tâm thành phố của anh H vẫn ít hơn thời gian gian tới trung tâm thành phố của anh T là 1 2 giờ. Tính vận tốc tới trung tâm thành phố của anh H là bao nhiêu? Hd: Quy về cùng thời gian lúc về của anh H: + Thời gian của H, vận tốc của anh H thì anh H đi được quãng đường 175 km. + Thời gian của H, vận tốc của anh T (vận tốc của anh H bằng 7 8 vận tốc của anh T) thì anh T đi được quãng đường bằng bao nhiêu km? Vì trong cùng thời gian thì quãng đường tỷ lệ thuận với vận tốc, nên ta có quãng đường anh T đi được trong cùng thời gian của anh H và với vận tốc của anh T là: 175 : 7 8 = 200 (km) 13 km Đg lúc đi: A B A Đg lúc về : B 48 km 35 km Đg anh T: A B A Đg anh H: B 220 km 175 km

36. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 36 Vận tốc của anh Hùng lúc về là: (220 – 200) : 1 2 = 40 (km/h) Bài 23: Một máy bay dự trữ nhiên liệu để bay trong 6 giờ với vận tốc 330 km/h khi trời không có gió. Khi cất cánh thì trời có gió với vận tốc gió là 30 km/h. Biết rằng khi đi trời ngược gió và khi quay trở về sân bay thì trời xuôi gió. Hỏi khoảng cách mà máy bay đã tới cánh sân bay bao nhiêu km để khi quay về tới sân bay lúc cất cánh thì vừa hết nhiên liệu? Hd: Theo bài ra ta có: tđi + tve = 6 (giờ) di di ve ve ve di v 300 t v 12 6 = = = = v 360 t v 10 5  Đến đây ta đã đưa về dạng toán tìm 2 số biết tổng bằng 6 và tỷ số bằng 5 6 . Do đó ta suy ra thời gian lúc đi là: 6 : (6 + 5) × 6 = 36 11 (giờ) Quãng đường mà máy bay đi được là: 300 × 36 11 = 10800 11 (km) Bài 24: Một đội máy cày dự định cày một diện tích ruộng theo kế hoạch với vận tốc 40 ha mỗi ngày. Khi thực hiện đội đã cày 52 ha mỗi ngày, vì vậy đội không những đã cày xong trước thời hạn 2 ngày và còn cày thêm được 4 ha nữa. Tính diện tích ruộng phải cày theo kế hoạch? Hd: Theo bài ra ta có: Diện tích đội đã cày hết thời gian dự định vượt so với diện tích theo kế hoạch là: 52 × 2 + 4 = 108 (ha) Diện tích trong mỗi ngày đội đã cày hơn so với dự định là: 52 – 40 = 12 (ha) Thời gian mà đội dự định cày xong diện tích ruộng theo kế hoạch là: 108 : 12 = 9 (ngày) Vve=330 km ? km Vđi =330 km A B t, 40 ha ? ha t, 52 ha A B 2 ngày + 4 ha C

37. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 37 Diện tích ruộng mà đội phải cày theo kế hoạch là: 40 × 9 = 360 (ha) Cách giải khác: Thời gian dự định t1- vận tốc dự định v1-diện tích ruộng theo kế hoạch Thời gian thực hiện t2-vận tốc thực hiện v2-diện tích ruộng theo kế hoạch Do đó suy ra: 1 2 2 1 t v 52 13 = = = t v 40 10 Mà ta lại dễ thấy: t1 = t2 + 4 2 52 . Đến đây đưa về dạng toán tìm 2 số biết tỷ số và hiệu của chúng. Bài 25: Một chiếc xe lửa chạy qua mặt một người đi xe đạp cùng chiều có vận tốc 18 km/h hết 24 giây và qua mặt một người đi xe đạp ngược chiều có vận tốc 18 km/h hết 8 giây. Tính vận tốc của xe lửa. Hd: Đổi đơn vị: 18 km/h = 5 m/s Trong khoảng thời gian 24 giây người ngồi trên xe lửa đi được quãng đường là: Chiều dài xe lửa + ( 5  24) = Chiều dài xe lửa + 120 (m) Trong khoảng thời gian 8 giây xe lửa tốc hành đi được quãng đường là: Chiều dài xe lửa – ( 5  8) = Chiều dài xe lửa – 40 (m)  Thời gian xe lửa đi được quãng đường 120 + 40 = 160 (m) là: 24 – 8 = 16(s) Vận tốc của xe lửa là: 160 : 16 = 10(m/s) = 36 (km/h) Bài 26: Hai địa điểm A, B cách nhau 72 km. Một ô tô đi từ A về B và một xe đạp đi từ B về A cùng xuất phát một lúc và sau 1 giờ 12 phút gặp nhau tại địa điểm chúng tôi đó ô tô tiếp tục chạy đến B rồi quay trở về A ngay với vận tốc cũ. Ô tô đuổi kịp người đi xe đạp ở vị trí D sau 48 phút kể từ lúc gặp nhau lần trước. Tính vận tốc của ô tô và xe đạp. Hd: 8 s 8 s 24 s 24 s Ngược chiều: Cùng chiều: Ô tô B DC 72 km AÔ tô Ô tô Xe đạp Xe đạp 72 phút 72 phút 48 phút

38. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 38 Theo bài ra ta có: Tổng vận tốc của ô tô và xe đạp là: 72000 : 72 = 1000 (m/ph) Sau khoảng thời gian 72 + 48 = 120 (phút) ta có: Xe đạp đi được quãng đường là: BC + CD = BD Ô tô đi được quãng đường là: AC + CB + BC + CD = AB + BD Hiệu của hai quãng đường của ô tô và xe đạp là: (AB + BD) – BD = AB = 72000 Hiệu của hai vận tốc của ô tô và xe đạp là: 72000 : 120 = 600 (m/ph) Vậy vận tốc của ô tô là: (1000 + 600) : 2 = 800 (m/ph) Vận tốc của xe đạp là: (1000 – 600) : 2 = 200 (m/ph) § 5. TOÁN HÌNH HỌC Bài 1: Cho tam giác ABC, với điểm M, N là điểm chính giữa cạnh AB, AC. Chứng minh rằng AMN ABC 1 S = S 4  Bài 2: Cho hình thang ABCD với hai đáy AB, CD. Hai đường chéo AC, BD cắt nhau tại E. Chứng minh rằng SAED = SBEC. N A B C M Hd: Ta có: SABC = 2 × SABN (Chung c/cao từ B tới AC và đáy AC = 2× AN) SABN = 2 × SAMN (Chung c/cao từ N tới AB và đáy AB = 2× AM) Do đó suy ra SABC = 4 × SAMN A B CD E Hd: Ta có: SADC = SBDC (Chung đáy DC và cùng c/cao của hình thang)  SADC – SEDC = SBDC – SEDC Do đó suy ra SAED = SBEC

39. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 39 Bài 3: Cho hình chữ nhật ABCD, I là điểm chia AB thành hai phần bằng nhau, đoạn thẳng BD cắt CI tại K. Tính diện tích hình chữ nhật ABCD, biết diện tích tứ giác ADKI là 20 cm2 . Hd: + Khẳng định được SDIB = 2 1 SCDB  h1 = 2 1 h2  SIDK = 2 1 SCDK  SCDI = SIDK + SDKC = 3SDIK. +Mà SCDI = 2 SADI  SADI = 2 3 SIDK hay SIDK = 3 2 SADI + SAIKD = SDAI + SIDK = 20 (cm2 ) nên suy ra: SADI + 3 2 SADI = 20 (cm2 ) hay SADI = 12 (cm2 ) + SABCD = 4  SADI = 4 12 = 48 (cm2 ). Bài 4: Cho hình chữ nhật ABCD. Trên cạnh AB lấy 2 điểm M, N sao cho AM = MN = NB. P là điểm chia cạnh DC thành 2 phần bằng nhau. ND cắt MP tại O. Biết diện tích tam giác DOP lớn hơn diện tích tam giác MON là 3, 5 cm2 . Tính diện tích hình chữ nhật ABCD. Hd: Từ SPOD = SMON + 3, 5 cm2 ta có:  SPOD + SNOP = SMON + SNOP + 3,5 cm2 Hay SNPD = SMPN + 3,5 cm2 . Mặt khác SNPD = 1, 5  SMPN (Vì đáy DP = 1, 5  MN và cùng đường cao là chiều rộng hình chữ nhật). Do đó SNPD = 10, 5 cm2 ; SMPN = 7 cm2 . Vậy SABCD = 4  SNPD = 42 (cm2 ). Bài 5: Cho hình chữ nhật ABCD có diện tích là 108 cm2 . M là điểm chính giữa cạnh AB. Trên đoạn thẳng DM lấy điểm I sao cho DI = 3 1 DM. Hai đoạn thẳng AI và BD cắt nhau tại điểm K. Tính diện tích tứ giác MIKC. Hd: + Ta có: SABD = 2 1 SABCD = 108 : 2 = 54 (cm2 ). SADM = SBDM (chung đường cao AD, đáy MA = MB)  SADM = 2 1 SABD = 54 : 2 = 27 (cm2 ). A B CD K I O h1 h2 MA B CD P N O M D C BA h2 K I h1

40. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 40  SAID = 3 1 SADM = 27 : 3 = 9 (cm2 ); SAMI = 3 2 SADM = 18 (cm2 ). SBID = 3 1 SBDM = 27 : 3 = 9 (cm2 ); SBMI = 3 2 SBDM = 18 (cm2 ).  SAIB = 18 + 18 = 36 (cm2 ).  SAID : SAIB = 9 : 36 = 4 1  1 2 h 1 h 4   SDIK : SBIK = 4 1 (chung đáy IK và 1 2 h 1 h 4  )  4 1  BK DK (chung đường cao hạ từ I) và SDIK = 5 1 SBID = 5 1  9 = 1, 8 (cm2 ). + Mặt khác ta có SDCK : SBCK = 4 1 (chung đáy CK và 4 1  BK DK ) Nên SDCK = 5 1 SBCD = 5 1 SABD = 54  5 1 = 10, 8 (cm2 ). SBCM = SADM = 27 (cm2 ). Vậy SMIKC = SABCD – SADM – SBCM – SDIK – SDCK = 108 – 27 – 27 – 1, 8 – 10, 8 = 41, 4 (cm2 ). Bài 6: Cho hình thang ABCD có đáy AB nhỏ hơn đáy CD và AD = BC. Trên cạnh AD lấy điểm M, kéo dài BC về phía C, trên đó lấy điểm N sao cho DM = CN. MN cắt DC tại I. Chứng tỏ rằng I là điểm chính giữa của MN. Hd: Ta có SBDC = SADC (chung đáy CD và các đường cao t1, t2 hạ từ A và B bằng nhau)  t1 = t2 (Vì có 2 đáy AD = BC)  SDNC = SDMC (Vì có đáy MD = NC và hai đường cao t1 = t2 )  h1 = h2 (chung đáy DC)  SMIC = SNIC (chung đáy IC và chiều cao h1 = h2)  IM = IN (chung đường cao hạ từ C). Bài 7: Cho hình chữ nhật ABCD có độ dài các cạnh CD = 20cm, AD = 14cm. Hai điểm M, N thuộc cạnh AB sao cho AM = 8cm, BN = 4cm. Hai đường thẳng CM và DN cắt nhau tại K. Tính tỷ số KN KD và diện tích SAMKD ? Hd: – Tính KN = ? KD I M h1 N D C BA h2 t1 t1 A BM N 14cm K

41. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 41 Ta có SNCM = 56 cm2 và SDCM = 140 cm2  NCM DCM S 56 2 = = S 140 5  1 2 h 2 = h 5 (h1, h2 là chiều cao từ N, D tới CM) Mà h1, h2 là chiều cao của MKN và MKD nên: MKN 1 MKD 2 S h 2 = = S h 5 Mặt khác MKN MKD S KN = S KD ( Vì 2 tam giác này chung chiều cao hạ từ M tới DN) Vậy ta suy ra: KN 2 = KD 5 – Tính SAMKD = ? Ta có: MKN MKD S KN 2 = = S KD 5 và SMKN + SMKD = 56 Đưa về dạng toán tìm 2 số biiét tổng bằng 56 còn tỷ số bằng 2/5. Ta dễ dàng tính được SMKD = 56 : ( 2 + 5)  5 = 40 cm2 . Suy ra SAMKD = SADM + SMDK = 56 + 40 = 96 Bài 8: Cho hình chữ nhật MNPQ có độ dài các cạnh MN = 15cm, NP = 12cm. Hai điểm E, F thuộc cạnh MN sao cho ME = NF = 6cm. Hai đường QF và PE cắt nhau tại K. Tính tỷ số KF KQ và diện tích SMEKQ ? Hd: – Tính KF = ? KQ Ta có SPEF = 18 cm2 và SEPQ = 90 cm2  FEP QEP S 18 1 = = S 90 5  1 2 h 1 = h 5 (h1, h2 là chiều cao từ F, Q tới EP ) Mà h1, h2 là chiều cao của FKE và QKE nên ta có: FKE 1 QKE 2 S h 1 = = S h 5 Mặt khác FKE QKE S KF = S KQ ( Vì 2 tam giác này chung chiều cao hạ từ Etới QN ) Vậy ta suy ra: KF 2 = KQ 5 – Tính SAMKD = ? M N PQ E F 12cm 15cm K

42. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 42 Tính FKE QKE S KF 1 = = S KE 5 và SQKE + SFKE = 18 Đưa về dạng toán tìm 2 số biiét tổng bằng 56 còn tỷ số bằng 1/5. Ta dễ dàng tính được SQKE = 18 : ( 1 + 5)  5 = 15 cm2 . Suy ra SMEKQ = SMEQ + SQKE = 36 + 15 = 51 cm2 Bài 9: Cho▲ABC có diện tích 120 cm2 . Hai điểm M, N lần lượt thuộc cạnh CA và CB sao cho CM = 2 3  CA; CN = 1 3  CB. Hai đường BM cắt AN tại K. Tính SAMNB và tỷ số KB KM ? Hd: – . Tính SAMNB = ? SCAN = 1/3 SCAB = 1/3 120 = 40 SCMN = 2/3 SCAN = 2/3 40 = 80/3 SBCMN = 120 – 80/3 = 280/3 – Tính KB KM =? Ta có: SABN = 2SACN ( Vì chung chiều cao hạ từ A tới BC và đáy BN = 2CN ) SKBN = 2 SKCN ( Vì chung chiều cao hạ từ K tới BC và đáy BN = 2CN )  SKAB = 2 SKAC Mà dễ thấy SKAC = 3. SKAM ( Vì chúng chung chiều cao hạ từ K tới AC và đáy AC = chúng tôi ) Do đó suy ra: SKAB = 2 3 SKAM = chúng tôi  KAB KAM S 6 = = 6 S 1 Mặt khác KAB KAM S KB = S KM ( Vì 2 tam giác này chung chiều cao hạ từ A tới BM ) Vậy ta suy ra: KB = 6 KM Bài 10: Cho▲ABC có diện tích 180 cm2 . Hai điểm M, N lần lượt thuộc cạnh CA và CB sao cho CM = 1 3  CA; CN = 2 3  CB. Hai đường BM cắt AN tại K. Tính SAMNB và tỷ số KM KB . Hd: – . Tính SAMNB = ? SCAN = 2/3 SCAB = 2/3 180 = 120 A B C M N K A B C M N K

43. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 43 SCMN = 1/3 SCAN = 1/3 120 = 40 SBCMN = 180 – 40 = 140 – Tính KM KB =? Ta có: SACN = 2SABN ( Vì chúng chung chiều cao hạ từ A tới BC và đáy CN = 2BN ) SKCN = 2SKBN ( Vì chúng chung chiều cao hạ từ K tới BC và đáy CN = 2BN )  SKAC = 2  SKAB Mà dễ thấy SKAM = 2/3 SKAC ( Vì chúng chung chiều cao hạ từ K tới AC và đáy AM = 2/3AC ) Do đó suy ra: 3/2  SKAM = 2 SKAB  KAM KAC S 3 = S 4 Mặt khác KAM KAB S KM = S KB ( Vì 2 tam giác này chung chiều cao hạ từ A tới BM ) Vậy ta suy ra: KM 3 = KB 4 Bài 11: Cho hình thang ABCD với hai đáy AB, DC và biết DC = 3AB. Hai đường chéo AC cắt BD tại E. Chứng minh rằng SADE = SBCE và tính tỷ số EA EC Hd: – Chứng minh SADE = SBCE Ta có: SBCD = SACD ( Chúng chung đáy DC và cùng chiều cao hình thang) Do đó: SADE – SCDE = SBCE – SCDE Suy ra: SADE = SBCE – Tính EA = ? EC Ta có: BEA BEC SEA = EC S ( Chúng chung chiều cao hạ từ B tới AC ) BEA 1 BEC 2 S h = S h (Chung đáy BE và nhận h1, h2 là chiều cao hạ từ A, C tới BE ) Mà 1 ABD 2 CBD h S = h S ( Vì h1, h2 là chiều cao hạ từ A, C tới BD ) A B CD E h1 h2

44. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 44 Dễ thấy SCBD = 3SABD ( Do chúng chung chiều cao là chiều cao của hình thang và DC = 3AB). Từ đây dễ dàng suy ra: EA 1 = EC 3 Bài 12: Cho hình thang ABCD với hai đáy AB, DC và biết DC = 3AB. Hai đường chéo AC cắt BD tại I. Chứng minh rằng SADI = SBCI và tính tỷ số IB ID Hd: – Chứng minh SADI = SBCI Ta có: SBCD = SACD ( Chúng chung đáy DC Và cùng chiều cao hình thang) Do đó: SADI – SCDI = SBCI – SCDI Suy ra: SADI = SBCI – Tính IB = ? ID Ta có: AIB AID SIB = ID S ( Chúng chung chiều cao hạ từ A tới BD ) AIB 1 AID 2 S h = S h ( Chung đáy AI và nhận h1, h2 là chiều cao hạ từ B, D tới AI ) Mà BAC1 2 DAC Sh = h S ( Vì h1, h2 là chiều cao hạ từ B, D tới AC ) Dễ thấy SDAC = 3SBAC (Do chúng cùng có chiều cao là chiều cao của hình thang và DC = 3AB). Từ đây dễ dàng suy ra: IB 1 = ID 3 Bài 13: Cho hình thang ABCD với hai đáy AB, DC và biết DC = 3AB. Hai đường chéo AC cắt BD tại I và hai cạnh bên CB cắt DA tại O. Chứng minh rằng SADI = SBCI và tính tỷ số OA OD Hd: – Chứng minh SADI = SBCI Ta có: SBCD = SACD (Chúng chung đáy DC và cùng chiều cao của hình thang) Do đó: SADI – SCDI = SBCI – SCDI Suy ra: SADI = SBCI A B CD I h1 h2 O A B CD I h1 h2

45. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 45 – Tính OA = ? OD Ta có: COA COD SOA = OD S ( Chúng chung chiều cao hạ từ C tới OD ) COA 1 COD 2 S h = S h (Chúng chung đáy OC và nhận h1, h2 là chiều cao hạ từ A, D tới OC ) Mà ABC1 2 DBC Sh = h S (Vì chung đáy BC và h1, h2 là chiều cao hạ từ A, D tới BC) Dễ thấy SDBC = 3SABC (Do chúng đều có chiều cao là chiều cao của hình thang và DC = 3AB). Từ đây dễ dàng suy ra: OA 1 = OD 3 Bài 14: Cho▲ABC với hai điểm M, N lần lượt là trung điểm của cạnh AB, AC. Hai đường thẳng CM cắt BN tại E và kẻ đường AE cắt cạnh BC tại điểm F. Hãy tìm tỷ số EM EC và chứng minh rằng F là trung điểm của cạnh BC. Hd: – Tính EM = ? EC Dễ thấy: SCAM = SBAN = ABC 1 S 2  Suy ra: SECN = SEBM Mặt khác ta có: SEBM = SEAM và SECN = SEAN Do đó: SEBM = SEAM = SECN = SEAN = ABC 1 S 6   SEAC = SEAB = SEBC = ABC 1 S 3   SEAM = EBC 1 S 2  . Suy ra: EM 1 = EC 2 – Chứng minh rằng: BF = CF Theo chứng minh trên ta có: SEAC = SEAB Mà hai tam giác này lại có chung cạnh AE, nên suy ra: h1 = h2 (Với h1, h2 là chiều cao hạ từ B, C tới AE) Suy ra: SEBF = SECF (Vì hai tam giác này cũng nhận h1, h2 là chiều cao và chung đáy EF). Do đó suy ra: BF = CF Bài 15: Cho▲ABC với hai điểm M, N lần lượt trên hai cạnh AB, AC sao cho: AB = 3AM, AC = 3AM . Biết diện tích SABC = 180 cm2 và hai đường thẳng CM cắt BN tại E. Hãy tính SMNCB và tìm tỷ số EM EC . A B C M N E F h1 h2

46. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 46 Hd: – Tính SMNCB = ? Ta có: AMN AMC 1 S S 3   (Chung chiều cao hạ từ M tới AC và đáy AC = 3AN) AMC ABC 1 S S 3   (Chúng chung chiều cao hạ từ C tới AB và đáy AB = 3AM) Suy ra: 2 AMN ABC 1 S S = 20 cm 9   . Do đó: SMNCB = 180 – 20 = 160 cm2 – Tính EM = ? EC Ta có: BAN BCN 1 S S 2   (Chung chiều cao hạ từ B tới AC và đáy CN = 2AN) EAN ECN 1 S S 2   (Chung chiều cao hạ từ E tới AC và đáy CN = 2AN) Do đó: BAN EAN BCN ECN 1 S S (S S ) 2      BAE BCE 1 S S 2   Mặt khác có: EBM EAB 2 S S 3   (Chung chiều cao hạ từ E tới AB và đáy AB = 3AM) Do đó suy ra: EBM BCE 3 1 S S 2 2    . Suy ra: EBM EBC S 1 = S 3 Bài 16: Cho▲ABC với hai điểm E, F lần lượt trên hai cạnh AB, AC sao cho: AB = 3AE, AC = 2AF . Biết diện tích SABC = 240 cm2 và hai đường thẳng CE cắt BF tại K. Hãy tính SEFCB và tìm tỷ số KE KC . Hd: – Tính SEFCB = ? Ta có: AEF AEC 1 S S 2   (Chung chiều cao hạ từ E tới AC và đáy AC = 2AN) A B C M N E A B C E F K 0, 5 đ + 0, 5 đ

47. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 47 AEC ABC 1 S S 3   (Chung chiều cao hạ từ C tới AB và đáy AB = 3AE) Suy ra: 2 AEF ABC 1 S S = 40 cm 6   . Do đó: SEFCB = 240 – 40 = 200 cm2 – Tính KE = ? KC Ta có: BAF BCFS S ( Chúng chung chiều cao hạ từ B tới AC và đáy CF = AF) Ta có: KAF KCFS S ( Chúng chung chiều cao hạ từ K tới AC và đáy CF = AF) Do đó suy ra: SBAF – SKAF = SBCF – SKCF  BAK BCKS S Mặt khác có: KBE KAB 2 S S 3   (Chúng chung chiều cao hạ từ K tới AB và đáy AB = 3AE). Do đó suy ra: KBE BCK 3 S S 2   . Suy ra: KBE KBC S 1 = S 3  KE 2 = KC 3 Bài 17: Cho▲ABC có diện tích 216 m2 , AB = AC và BC = 36m. Trên cạnh AB lấy điểm M sao cho 1 MB = AB 2  , trên cạnh AC lấy điểm N sao cho 1 NC = AC 2  và trên cạnh BC lấy điểm I sao cho 1 BI = BC 2  . Nối M với N và N với I, ta được hình thang MNIB. Hãy tính : a) Diện tích hình thang MNIB b) Độ dài đoạn thẳng MN. Hd: a) Diện tích hình thang MNIB Ta thấy: SNAM = 1 2  SNBA SBNA = 1 2  SBCA Vậy suy ra: SNAM = 1 4  SBCA = 54 m2 Tương tự có: SCNI = 54 m2 Do đó có: SMNIB = 216 – 54 – 54 = 108 m2 b) Độ dài đoạn thẳng MN: SBNC = 1 2 SBCA = 108 m2 , mà BC = 36 m . Suy ra chiều cao hạ từ N tới BC là: 2  108 : 36 = 3 (m) Diện tích của hình thang MNCB là: 216 – 54 = 162 (m2 ) 36 m A B C M N I h

48. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 48 Độ dài đáy MN là: 2162 : 3 – 36 = 72 (m) Hd: – SAEID = SABCD – SEBC – SICD = 400 – 100 – 80 = 220 – Dễ dàng tính được tổng diện tích của hai tam giác ICF và ICD bằng 100. – Xét việc tính tỉ số diện tớch của hai tam giác ICF và ICD: ICF ECF1 ICD 2 ECD S Sh 50 1 = = = = S h S 200 4 – Suy ra: SICD = 100 : (4 + 1)  4 = 80 – SAEID = SABCD – SEBC – SICD = 400 Bài 20: Cho ∆ABC có dt(ABC) = 100 cm2 . Lấy hai điểm E  cạnh AC và F  cạnh BC sao cho BF = 1 2  FC và CE = 1 3  AE.Gọi điểm K = EFAB. A B CD E F I20 Bài 18: Cho ∆ABC có: AB = AC. Biết điểm E  cạnh AB và điểm F  AC kéo dài sao cho BE = CF. Gọi I = EF  BC. Chứng minh rằng : IE = IF Hd: – Để c.m.r IE = IF ta c.m.r tam giác BEI và BFI chúng có diện tích bằng nhau – Để c.m.r tam giác BEI và BFI có diện tích bằng nhau ta c.m.r h1 = h2 – Để c.m.r h1 = h2 ta c.m.r tam giác EBC và FBC có diện tích bằng nhau – Để c.m.r tam giác EBC và FBC có diện tích bằng nhau ta c.m.r l1 = l2 Ta thấy l1 = l2 là đễ thấy tam giác ABC có AB = AC Bài 19: Cho hình vuôngABCD có độ dài cạnh là 20cm Biết điểm E  cạnh AB và điểm F  cạnh BC sao cho EA = EB = FB = FC. Gọi I = CE  DF . Tính dt(AEID) = ? h2 E F A B C I h1 l1 l2

49. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 49 Hãy tính dt (ABFE) = ? và tính tỷ số KB ? KA  Hd: dt(KCF) = 2dt(KBF) + dt(ECF) = 2dt(EBF)  dt(KCE) = 2dt(KBE) Mà dt(KCE) = 1 3 dt(KAE)  dt(KBE) = 1 6 dt(KAE)  KB 1 KA 6  Bài 21: Cho ∆ABC có hai điểm M  cạnh AB và N  cạnh AC sao cho AM = 1 3  AB và AN = 1 3  AC. Lấy điểm bất kỳ E  MN ; Gọi F = AEBC Tính tỉ số AE ? AF  Hd: Ta cú dt(AMF) = 1 3 dt(ABF) dt(ANF) = 1 3 dt(ACF)  dt(MNP) = 2dt(AMN)  h2 = 2  h1  dt(MEF) = 2dt(AME)  dt(NEF) = 2dt(ANE) AF EF = 2AE EF + AE = 3AE      AE 1 EF 3  Bài 22: Cho ABCD là hình chữ nhật Lấy điểm E  cạnh AD và F  cạnh BC sao cho EA = ED = FB = FD. Hai điểm M  cạnh AB và N  cạnh DC.Gọi điểm I = EF  MN a) Tính dt(ABFE) = ? dt(EFCD) = ? theo dt(ABCD) b) So sánh MI và NI C A B E F K C A B E F N M h1 h2 A B CD E F M N I

50. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 50 Hd: a) dt(ABFE) = (AE+BF)×AB AD×AB 1 = = dt(ABC) 2 2 2  dt(DEFC) = ? Tương tự vỡ đây là hai hình thang b) 1 1 dt(AEM )+dt(BFM )= AM ×AE+ BM ×BF 2 2 1 1 = (AM +BM )×AD = AB×AD 4 4 Tương tự ta có : 1 dt(D EM )+dt(C FN)= AB×AD 4  dt(MEF) = dt(NEF)  h1 = h2  IM = IN Bài 23: Cho ABCD là hình chữ nhật. Lấy điểm E, F trên hai cạnh AB, CD sao cho EA = ED = FB = FC. Lấy I trên EF sao cho EI = 2  FI a) So sánh: dt(AMND) và dt(CNMB) b) Chứng minh rằng: AM + DN EI = 2 Hd: 1 d t(A E M )+ d t(D E N )= (A M + D N )× A E 2 1 = (A M + D N )× A D 4 1 = d t(A M N D ) 2 d t(A E M ) + d t(D E N ) = d t(E M N ) Tương tự : dt(BFM) + dt(CFN) = dt(FMN) Ta có : dt(MEI) = 2 dt(MFI) dt(NEI) = 2 dt(NFI)  dt(MEI) + dt(NEI) = 2 dt(MFI) + dt(NFI)    dt(EMN) = 2 dt(FMN)  2dt(EMN) = 4 dt(FMN) Do đó suy ra: dt (AMND) = 2dt (CMNB) A B CD E F M N I

51. Bồi dưỡng Học sinh giỏi Toán tiểu học Liên hệ đăng ký học: 0936.128.126. Website: http://daytoantieuhoc.com 51 Bài 24: Cho ABCD là hình chữ nhật. BC = 8 ; AB = 10 BM = DN ; EB = EC Kẻ EF song song với AB, CD a) So sánh: dt(AMND) và dt(BMNC) b) Tính EF = ? Hd: a) – Chứng tỏ hai tứ giác BMNC và DNMA là hai hình thang – Áp dụng công thức tính diện tích hình thang vào 2 tứ giác BMFE và EFNC – Từ đây suy ra diện tích chúng bằng nhau và bằng nửa diện tích hình chữ nhật b) Tính tổng diện tích hai hình thang BMFE và EFNC là hai hình thang bằng diện tích hình thang BMNC là 40. Ta có: 2  (BM + EF) + 2  (EF + CN) = 40  (BM + EF) + (EF + CN) = 20 Mà ta biết BM + CN = AB = 10 nên suy ra: 2  EF = 10  EF = 5 Bài 25: Cho ABCD là hình chữ nhật có: Diện tích hình chữ nhật là 108 cm2 MA = MB ; DM = 3  DN Hãy tính: a) dt(DMI) =? b) dt(DIC) =? c) dt(MNIC) =? Hd: a) Ta có 21 dt(BDM) = dt(ABD) = 27 cm 2  dt(AMN) = 2  dt(ADN) và dt(IMN) = 2  dt(IDN)  dt(AMN) + dt(IMN) = 2  [dt(ADN) + dt(IDN)]  dt(AMI) = 2  dt(ADI) Mà dt(AMI) = dt(BMI)  dt(AMI) = dt(BMI) = 2  dt(ADI) Ta dễ thấy dt(AMI) + dt(BMI) + dt(ADI) = dt(ABD) = 54 cm2 Do đó suy ra: dt(BMI) = 54 : 5  2 = 21,6 cm2  dt(DMI) = dt(BMD) – dt(BMI) = 27 – 21,6 = 5,4 cm2 b) Ta có 21 dt(BDM) = dt(BCD) = 27 cm 2  A B CD EF M N 4 4 CD A BM I N h1 h2

Luận Văn Đề Tài Một Số Biện Pháp Bồi Dưỡng Học Sinh Giỏi Môn Tiếng Việt

Theo “Chiến lược con người” của Đảng và Nhà nước ta đã chỉ rõ với mục tiêu: “Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài” đã được cụ thể hoá trong nhiều văn kiện của Đảng và Nhà nước. Đặc biệt trong xu thế hội nhập quốc tế mục tiêu “Bồi dưỡng nhân tài” càng được Đảng và Nhà nước quan tâm lớn “Hiền tài là nguyên khí quốc gia”. Đất nước muốn phồn thịnh đòi hỏi phải có những nhân tố thích kế để có hướng đi, có những người tài để giúp nước. Hiện nay, chúng ta đang trong xu thế hội nhập nền kinh tế quốc tế, gia nhập WTO thì nhân tài là một trong những yếu tố để chúng ta có thể tiếp cận với sự tiến bộ của khoa học công nghệ của các nước trong khu vực và trên thế giới. Thực hiện mục tiêu đó, nhà trường của chúng ta đang cố gắng hướng đến sự phát triển tối đa những năng lực tiềm tàng trong mỗi học sinh. Ở các trường Tiểu học hiện nay, đồng thời với nhiệm vụ phổ cập giáo dục Tiểu học, nâng cao chất lượng đại trà, việc chăm lo bồi dưỡng học sinh giỏi là một nôi dung trọng tâm, thường xuyên đang được nhiều cấp bộ chính quyền và nhân dân địa phương quan tâm nhưng nguyên nhân sâu xa nhất đó chính là thực hiện mục tiêu giáo dục mà Đảng và Nhà nước đã đề ra. Mục đích bồi dưỡng học sinh giỏi Tiếng Việt là phát triển năng lực cảm thụ cái hay, cái đẹp những giá trị văn học, là hướng cho các em đến với giao tiếp lịch sự và văn minh, là bồi dưỡng tình cảm tốt đẹp với người, thiên nhiên hướng tới cái đẹp trong cuộc sống, là phát triển hứng thú say mê học tập và giúp các em học tốt các môn học khác. Đặc biệt hiện nay, nhiều nhà nghiên cứu đã cho ra những công trình nhằm phục vụ cho lĩnh vực này. Tuy nhiên tuỳ từng địa phương cụ thể có những cách áp dụng khác nhau nên việc vận dụng gặp không ít khó khăn. Xuất phát từ những lý do cơ bản trên, tôi lựa chọn đề tài nghiên cứu “Một số biện pháp bồi dưỡng học sinh giỏi Tiếng Việt” ở trường Tiểu học Hùng Vương- Thành phố Đông Hà- Tỉnh Quảng Trị

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

Thư viện tài liệu Phong Phú

Hỗ trợ download nhiều Website

Nạp thẻ & Download nhanh

Hỗ trợ nạp thẻ qua Momo & Zalo Pay

Nhận nhiều khuyến mãi

Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY

DANH MỤC TÀI LIỆU LUẬN VĂN

Cập nhật thông tin chi tiết về Các Biện Pháp Phát Hiện Và Bồi Dưỡng Học Sinh Giỏi Tiếng Việt Lớp 5 Ở Các Trường Tiểu Học Quốc Tế Tại Việt Nam trên website Phauthuatthankinh.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!